Araya-Letelier, G., Antico, F. C., Carrasco, M., Rojas, P., & Garcia-Herrera, C. M. (2017). Effectiveness of new natural fibers on damage-mechanical performance of mortar. Constr. Build. Mater., 152, 672–682.
Abstract: Addition of fibers to cement-based materials improve tensile and flexural strength, fracture toughness, abrasion resistance, delay cracking, and reduce crack widths. Natural fibers have recently become more popular in the construction materials community. This investigation addresses the characterization of a new animal fiber (pig hair), a massive food-industry waste worldwide, and its use in mortars. Morphological, physical and mechanical properties of pig hair are determined in order to be used as reinforcement in mortars. A sensitivity analysis on the volumes of fiber in mortars is developed. The results from this investigation showed that reinforced mortars significantly improve impact strength, abrasion resistance, plastic shrinkage cracking, age at cracking, and crack widths as fiber volume increases. Other properties such as compressive and flexural strength, density, porosity and modulus of elasticity of reinforced mortars are not significantly affected by the addition of pig hair. (C) 2017 Elsevier Ltd. All rights reserved.
|
Araya-Letelier, G., Concha-Riedel, J., Antico, F. C., Valdes, C., & Caceres, G. (2018). Influence of natural fiber dosage and length on adobe mixes damage-mechanical behavior. Constr. Build. Mater., 174, 645–655.
Abstract: This study addresses the use of a natural fiber (pig hair), a massive food-industry waste, as reinforcement in adobe mixes (a specific type of earthen material). The relevance of this work resides in the fact that earthen materials are still widely used worldwide because of their low cost, availability, and low environmental impact. Results show that adobe mixes' mechanical-damage behavior is sensitive to both (i) fiber dosage and (ii) fiber length. Impact strength and flexural toughness are increased, whereas shrinkage distributed crack width is reduced. Average values of compressive and flexural strengths are reduced as fiber dosage and length increase, as a result of porosity generated by fiber clustering. Based on the results of this work a dosage of 0.5% by weight of dry soil using 7 mm fibers is optimal to improve crack control, flexural toughness and impact strength without statistically affecting flexural and compressive strengths. (C) 2018 Elsevier Ltd. All rights reserved.
|
Antico, F. C., Rojas, P., Briones, F., & Araya-Letelier, G. (2021). Animal fibers as water reservoirs for internal curing of mortars and their limits caused by fiber clustering. Constr. Build. Mater., 267, 120918.
Abstract: We present a bottom-up experimental research to address evidence of internal curing of mortars using randomly distributed pig-hair as water reservoirs. Plain and reinforced mortars with pig hair ranging from 0 to 8 kg of fibers per cubic meter of mortar were prepared. The microstructures of plain and reinforced mortars were scanned using electron microscopy and the microhardnesses were measured within
the bulk cement paste and cement paste near pig fibers. Electrical resistivity, surface absorption, and residual compressive strength of mortars after freeze-thaw cycles were used to test the effects of internal curing caused by pig hair. Natural fibers used to reinforce mortars increase their toughness and provide
part of the necessary water for internal curing, yet internal curing originated by the addition of natural fibers is not proportional to fiber dosage; where the potential to form fiber clusters increases as fiber dosage increases. Results show that there is an optimum fiber dosage that maximizes internal curing
caused by these fibers. This study contributes to the research on reinforced mortars with natural fibers to provide sustainable solutions for construction materials.
|