Home | << 1 >> |
Espinoza-Retamal, J. I., Brahm, R., Petrovich, C., Jordán, A., Stefánsson, G., Sedaghati, E., et al. (2023). The Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b. Astrophys. J. Lett., 958(2), L20.
Abstract: High-eccentricity tidal migration predicts the existence of highly eccentric proto hot Jupiters on the “tidal circularization track,” meaning that they might eventually become hot Jupiters, but that their migratory journey remains incomplete. Having experienced moderate amounts of tidal evolution of their orbital elements, proto hot Jupiter systems can be powerful test beds for the underlying mechanisms of eccentricity growth. Notably, they may be used for discriminating between variants of high-eccentricity migration, each predicting a distinct evolution of misalignment between the star and the planet's orbit. We constrain the spin-orbit misalignment of the proto hot Jupiter TOI-3362b with high-precision radial-velocity observations using ESPRESSO at Very Large Telescope. The observations reveal a sky-projected obliquity lambda=1.2+2.8(degrees)/-2.7 and constrain the orbital eccentricity to e = 0.720 +/- 0.016, making it one of the most eccentric gas giants for which the obliquity has been measured. Although the large eccentricity and the striking orbit alignment of the planet are puzzling, we suggest that ongoing coplanar high-eccentricity migration driven by a distant companion is a possible explanation for the system's architecture. This distant companion would need to reside beyond 5 au at 95% confidence to be compatible with the available radial-velocity observations.
Keywords: IN-SITU FORMATION; PLANET; TRANSIT; EVOLUTION; BINARY; PHOTOMETRY; SCATTERING; TELESCOPE; MIGRATION; COMPANION
|
Kalyaan, A., Pinilla, P., Krijt, S., Mulders, G. D., & Banzatti, A. (2021). Linking Outer Disk Pebble Dynamics and Gaps to Inner Disk Water Enrichment. Astrophys. J., 921(1), 84.
Abstract: Millimeter continuum imaging of protoplanetary disks reveals the distribution of solid particles and the presence of substructures (gaps and rings) beyond 5-10 au, while infrared (IR) spectra provide access to abundances of gaseous species at smaller disk radii. Building on recent observational findings of an anti-correlation between the inner disk water luminosity and outer dust disk radius, we aim here at investigating the dynamics of icy solids that drift from the outer disk and sublimate their ice inside the snow line, enriching the water vapor that is observed in the IR. We use a volatile-inclusive disk evolution model to explore a range of conditions (gap location, particle size, disk mass, and alpha viscosity) under which gaps in the outer disk efficiently block the inward drift of icy solids. We find that inner disk vapor enrichment is highly sensitive to the location of a disk gap, yielding for each particle size a radial “sweet spot” that reduces the inner disk vapor enrichment to a minimum. For pebbles of 1-10 mm in size, which carry the most mass, this sweet spot is at 7-15 au, suggesting that inner gaps may have a key role in reducing ice delivery to the inner disk and may not allow the formation of Earths and super-Earths. This highlights the importance of observationally determining the presence and properties of inner gaps in disks. Finally, we argue that the inner water vapor abundance can be used as a proxy for estimating the pebble drift efficiency and mass flux entering the inner disk.
Keywords: PROTOPLANETARY DISC; PLANET FORMATION; BINARY-SYSTEMS; EVOLUTION; VAPOR; PARTICLES; REGIONS; RINGS; GAS; H2O
|
Mireles, I., Shporer, A., Grieves, N., Zhou, G., Gunther, M. N., Brahm, R., et al. (2020). TOI 694b and TIC 220568520b: Two Low-mass Companions near the Hydrogen-burning Mass Limit Orbiting Sun-like Stars. Astron. J., 160(3), 13 pp.
Abstract: We report the discovery of TOI 694 b and TIC 220568520 b, two low-mass stellar companions in eccentric orbits around metal-rich Sun-like stars, first detected by the Transiting Exoplanet Survey Satellite (TESS). TOI 694 b has an orbital period of 48.05131 +/- 0.00019 days and eccentricity of 0.51946 +/- 0.00081, and we derive a mass of 89.0 +/- 5.3 M-Jup (0.0849 +/- 0.0051 M-circle dot) and radius of 1.111 +/- 0.017 R-Jup (0.1142 +/- 0.0017 R-circle dot). TIC 220568520 b has an orbital period of 18.55769 +/- 0.00039 days and eccentricity of 0.0964 +/- 0.0032, and we derive a mass of 107.2 +/- 5.2 M-Jup (0.1023 +/- 0.0050 M-circle dot) and radius of 1.248 +/- 0.018 R-Jup (0.1282 +/- 0.0019 R-circle dot). Both binary companions lie close to and above the hydrogen-burning mass threshold that separates brown dwarfs and the lowest-mass stars, with TOI 694 b being 2s above the canonical mass threshold of 0.075 M-circle dot. The relatively long periods of the systems mean that the magnetic fields of the low-mass companions are not expected to inhibit convection and inflate the radius, which according to one leading theory is common in similar objects residing in short-period tidally synchronized binary systems. Indeed we do not find radius inflation for these two objects when compared to theoretical isochrones. These two new objects add to the short but growing list of low-mass stars with well-measured masses and radii, and highlight the potential of the TESS mission for detecting such rare objects orbiting bright stars.
Keywords: Low mass stars; M dwarf stars; Eclipsing binary stars
|
Rojas, P. A.., Martinez, C., Aguilar, C., Briones, F., Zelaya, M. E., & Guzman, D. (2016). Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying. Ing. Invest., 36(3), 102–109.
Abstract: The manufacture of alloys in solid state has many differences with the conventional melting (casting) process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni), and different binary alloys (Cu-Ni and Cu-Zr), under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD) patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H) method and then compared with the transmission electron microscope (TEM) images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys). In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glass-forming ability.
Keywords: EXTENDED SOLID SOLUBILITY; CU-ZR BINARY; NANOCRYSTALLINE METALS; BEHAVIOR; POWDERS; SYSTEM; DISPERSION; GLASS; SIZE; TI
|
Sedaghati, E., Jordan, A., Brahm, R., Munoz, D. J., Petrovich, C., & Hobson, M. J. (2023). Orbital Alignment of the Eccentric Warm Jupiter TOI-677 b. Astron. J., 166(3), 130.
Abstract: Warm Jupiters lay out an excellent laboratory for testing models of planet formation and migration. Their separation from the host star makes tidal reprocessing of their orbits ineffective, which preserves the orbital architectures that result from the planet-forming process. Among the measurable properties, the orbital inclination with respect to the stellar rotational axis, stands out as a crucial diagnostic for understanding the migration mechanisms behind the origin of close-in planets. Observational limitations have made the procurement of spin-orbit measurements heavily biased toward hot Jupiter systems. In recent years, however, high-precision spectroscopy has begun to provide obliquity measurements for planets well into the warm Jupiter regime. In this study, we present Rossiter-McLaughlin (RM) measurements of the projected obliquity angle for the warm Jupiter TOI-677 b using ESPRESSO at the VLT. TOI-677 b exhibits an extreme degree of alignment (lambda = 0.3 +/- 1.3 deg), which is particularly puzzling given its significant eccentricity (e approximate to 0.45). TOI-677 b thus joins a growing class of close-in giants that exhibit large eccentricities and low spin-orbit angles, which is a configuration not predicted by existing models. We also present the detection of a candidate outer brown dwarf companion on an eccentric, wide orbit (e approximate to 0.4 and P approximate to 13 yr). Using simple estimates, we show that this companion is unlikely to be the cause of the unusual orbit of TOI-677 b. Therefore, it is essential that future efforts prioritize the acquisition of RM measurements for warm Jupiters.
Keywords: IN-SITU FORMATION; TIDAL EVOLUTION; HOT JUPITERS; EXTRASOLAR PLANETS; GIANT PLANETS; BINARY; STARS; MIGRATION; SYSTEMS; VELOCITY
|