|
Aranis, A., de la Cruz, R., Montenegro, C., Ramirez, M., Caballero, L., Gomez, A., et al. (2022). Meta-Estimation of Araucanian Herring, Strangomera bentincki (Norman, 1936), Biological Indicators in the Central-South Zone of Chile (32 degrees-47 degrees LS). Front. Mar. Sci., 9, 886321.
Abstract: Araucanian herring, Strangomera bentincki, is ecologically and economically important. Its complexity, like that of other pelagic fish, arises from seasonal population changes related to distribution with different spatial dynamics and demographic fractions, subject to strong environmental and fishing exploitation variations. This implies the necessity for a thorough understanding of biological processes, which are interpreted with the help of various activities, and directly or indirectly allow to infer and deliver adequate indicators. These activities facilitate a correct technical analysis and consistent conclusions for resource management and administration. In this context, the present study identified and addressed the need to integrate information on Araucanian herring lengths made available in historical series from commercial fleet fishing and sources such as special monitoring, hydroacoustic cruises, and monitoring during closed seasons. The study focused on methodologies widely used in biostatistics that allow analyzing the feasibility of integrating data from different origins, focused on evaluating the correct management of size structures that vary by origin, sample size, and volumes extracted. We call this tool meta-estimation. It estimates the integration of biological-fishery size indicators that originated mainly from commercial fishing and research fisheries for central-south pelagic fishery with data of catch between January and July 2018.
|
|
|
Leiva, V., Ruggeri, F., Saulo, H., & Vivanco, J. F. (2017). A methodology based on the Birnbaum-Saunders distribution for reliability analysis applied to nano-materials. Reliab. Eng. Syst. Saf., 157, 192–201.
Abstract: The Birnbaum-Saunders distribution has been widely studied and applied to reliability studies. This paper proposes a novel use of this distribution to analyze the effect on hardness, a material mechanical property, when incorporating nano-particles inside a polymeric bone cement. A plain variety and two modified types of mesoporous silica nano-particles are considered. In biomaterials, one can study the effect of nano-particles on mechanical response reliability. Experimental data collected by the authors from a micro-indentation test about hardness of a commercially available polymeric bone cement are analyzed. Hardness is modeled with the Birnbaum-Saunders distribution and Bayesian inference is performed to derive a methodology, which allows us to evaluate the effect of using nano-particles at different loadings by the R software. (C) 2016 Elsevier Ltd. All rights reserved.
|
|