|
Baler, R. V., Wijnhoven, I. B., del Valle, V. I., Giovanetti, C. M., & Vivanco, J. F. (2019). Microporosity Clustering Assessment in Calcium Phosphate Bioceramic Particles. Front. Bioeng. Biotechnol., 7(281), 7 pp.
Abstract: There has been an increase in the application of different biomaterials to repair hard tissues. Within these biomaterials, calcium phosphate (CaP) bioceramics are suitable candidates, since they can be biocompatible, biodegradable, osteoinductive, and osteoconductive. Moreover, during sintering, bioceramic materials are prone to form micropores and undergo changes in their surface topographical features, which influence cellular physiology and bone ingrowth. In this study, five geometrical properties from the surface of CaP bioceramic particles and their micropores were analyzed by data mining techniques, driven by the research question: what are the geometrical properties of individual micropores in a CaP bioceramic, and how do they relate to each other? The analysis not only shows that it is feasible to determine the existence of micropore clusters, but also to quantify their geometrical properties. As a result, these CaP bioceramic particles present three groups of micropore clusters distinctive by their geometrical properties. Consequently, this new methodological clustering assessment can be applied to advance the knowledge about CaP bioceramics and their role in bone tissue engineering.
|
|
|
Millan, C., Vivanco, J. F., Benjumeda-Wijnhoven, I. M., Bjelica, S., & Santibanez, J. F. (2018). Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. Adv.Exp.Med.Biol., 1107, 91–112.
Abstract: In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calciumphosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
|
|
|
Vivanco, J., Jakes, J. E., Slane, J., & Ploeg, H. L. (2014). Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds. Ceram. Int., 40(8), 12485–12492.
Abstract: Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may violate the rigid support assumption of the standard Oliver-Pharr method currently used in evaluating the Meyer hardness, H, and elastic modulus, E-s, of such structures. Thus, the objective of this research was to use the structural compliance method to assess whether or not specimen-scale flexing may occur during nanoindentation of bioceramic bone scaffolds and to remove the associated artifact on the H and E-s if it did occur. Scaffolds were fabricated using tricalcium phosphate and sintered at 950 degrees C and 1150 degrees C, and nanoindents were placed in three different (center, edge, and corner) scaffold locations. Using only the standard Oliver-Pharr analysis it was found that H and E-s were significantly affected by both sintering temperature and nanoindents location (p < 0.05). However, specimen-scale flexing occurred during nanoindentation in the 1150 degrees C corner location. After removing the effects of the flexing from the measurement using the structural compliance method, it was concluded that H and E-s were affected only by the sintering temperature (p < 0.05) irrespective of the nanoindent locations. These results show that specimen-scale flexing may occur during nanoindentation of components in porous bioceramic scaffolds or in similar structure biomaterials, and that the structural compliance method must be utilized to accurately assess H and E-s of these components. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
|
|