|
Acuna, V., Ferreira, C. E., Freire, A. S., & Moreno, E. (2014). Solving the maximum edge biclique packing problem on unbalanced bipartite graphs. Discret Appl. Math., 164, 2–12.
Abstract: A biclique is a complete bipartite graph. Given an (L, R)-bipartite graph G = (V, E) and a positive integer k, the maximum edge biclique packing (num') problem consists in finding a set of at most k bicliques, subgraphs of G, such that the bicliques are vertex disjoint with respect to a subset of vertices S, where S E {V, L, R}, and the number of edges inside the bicliques is maximized. The maximum edge biclique (mEs) problem is a special case of the MEBP problem in which k = 1. Several applications of the MEB problem have been studied and, in this paper, we describe applications of the MEBP problem in metabolic networks and product bundling. In these applications the input graphs are very unbalanced (i.e., IRI is considerably greater than ILI), thus we consider carefully this property in our models. We introduce a new formulation for the MEB problem and a branch-and-price scheme, using the classical branch rule by Ryan and Foster, for the MEBP problem. Finally, we present computational experiments with instances that come from the described applications and also with randomly generated instances. (C) 2011 Elsevier B.V. All rights reserved.
|
|
|
Osorio-Valenzuela, L., Pereira, J., Quezada, F., & Vasquez, O. C. (2019). Minimizing the number of machines with limited workload capacity for scheduling jobs with interval constraints. Appl. Math. Model., 74, 512–527.
Abstract: In this paper, we consider a parallel machine scheduling problem in which machines have a limited workload capacity and jobs have deadlines and release dates. The problem is motivated by the operation of energy storage management systems for microgrids under emergency conditions and generalizes some problems that have already been studied in the literature for their theoretical value. In this work, we propose heuristic and exact algorithms to solve the problem. The heuristics are adaptations of classical bin packing heuristics in which additional conditions on the feasibility of a solution are imposed, whereas the exact method is a branch-and-price approach. The results show that the branch-andprice approach is able to optimally solve random instances with up to 250 jobs within a time limit of one hour, while the heuristic procedures provide near optimal solution within reduced running times. Finally, we also provide additional complexity results for a special case of the problem. (C) 2019 Elsevier Inc. All rights reserved.
|
|