| 
Citations
 | 
   web
Bertossi, L. (2022). Declarative Approaches to Counterfactual Explanations for Classification. Theory Pract. Log. Program., Early Access.
toggle visibility
Gaskins, J. T., Fuentes, C., & De la Cruz, R. (2022). A Bayesian nonparametric model for classification of longitudinal profiles. Biostatistics, Early Access.
toggle visibility
Henderson, R. G., Verougstraete, V., Anderson, K., Arbildua, J. J., Brock, T. O., Brouwers, T., et al. (2014). Inter-laboratory validation of bioaccessibility testing for metals. Regul. Toxicol. Pharmacol., 70(1), 170–181.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2017). Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers. Neurocomputing, 226, 109–116.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2018). A non-iterative method for pruning hidden neurons in neural networks with random weights. Appl. Soft. Comput., 70, 1109–1121.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2019). Noise reduction for near-infrared spectroscopy data using extreme learning machines. Eng. Appl. Artif. Intell., 79, 13–22.
toggle visibility
Hughes, S., Moreno, S., Yushimito, W. F., & Huerta-Canepa, G. (2019). Evaluation of machine learning methodologies to predict stop delivery times from GPS data. Transp. Res. Pt. C-Emerg. Technol., 109, 289–304.
toggle visibility
Leal, L., Montealegre, P., Osses, A., & Rapaport, I. (2022). A large diffusion and small amplification dynamics for density classification on graphs. Int. J. Mod Phys. C, Early Access.
toggle visibility
Lobos, F., Goles, E., Ruivo, E. L. P., de Oliveira, P. P. B., & Montealegre, P. (2018). Mining a Class of Decision Problems for One-dimensional Cellular Automata. J. Cell. Autom., 13(5-6), 393–405.
toggle visibility
Marquez, M., Meza, C., Lee, D. J., & De la Cruz, R. (2023). Classification of longitudinal profiles using semi-parametric nonlinear mixed models with P-Splines and the SAEM algorithm. Stat. Med., Early Access.
toggle visibility
Montalva-Medel, M., de Oliveira, P. P. B., & Goles, E. (2018). A portfolio of classification problems by one-dimensional cellular automata, over cyclic binary configurations and parallel update. Nat. Comput., 17(3), 663–671.
toggle visibility
Pham, D. T., & Ruz, G. A. (2009). Unsupervised training of Bayesian networks for data clustering. Proc. R. Soc. A-Math. Phys. Eng. Sci., 465(2109), 2927–2948.
toggle visibility
Rozas Andaur, J. M., Ruz, G. A., & Goycoolea, M. (2021). Predicting Out-of-Stock Using Machine Learning: An Application in a Retail Packaged Foods Manufacturing Company. Electronics, 10(22), 2787.
toggle visibility
Ruz, G. A. (2016). Improving the performance of inductive learning classifiers through the presentation order of the training patterns. Expert Syst. Appl., 58, 1–9.
toggle visibility
Sanchez-Saez, P., Lira, H., Marti, L., Sanchez-Pi, N., Arredondo, J., Bauer, F. E., et al. (2021). Searching for Changing-state AGNs in Massive Data Sets. I. Applying Deep Learning and Anomaly-detection Techniques to Find AGNs with Anomalous Variability Behaviors. Astron. J., 162(5), 206.
toggle visibility