| 
Citations
 | 
   web
Allende, C., Sohn, E., & Little, C. (2015). Treelink: data integration, clustering and visualization of phylogenetic trees. BMC Bioinformatics, 16, 6 pp.
toggle visibility
Araya-Diaz, P., Ruz, G. A., & Palomino, H. M. (2013). Discovering Craniofacial Patterns Using Multivariate Cephalometric Data for Treatment Decision Making in Orthodontics. Int. J. Morphol., 31(3), 1109–1115.
toggle visibility
Baler, R. V., Wijnhoven, I. B., del Valle, V. I., Giovanetti, C. M., & Vivanco, J. F. (2019). Microporosity Clustering Assessment in Calcium Phosphate Bioceramic Particles. Front. Bioeng. Biotechnol., 7(281), 7 pp.
toggle visibility
Canessa, E., Chaigneau, S. E., Moreno, S., & Lagos, R. (2020). Informational content of cosine and other similarities calculated from high-dimensional Conceptual Property Norm data. Cogn. Process., to appear, 14 pp.
toggle visibility
Fierro, R., Leiva, V., & Moller, J. (2015). The Hawkes Process With Different Exciting Functions And Its Asymptotic Behavior. J. Appl. Probab., 52(1), 37–54.
toggle visibility
Garreton, M., & Sanchez, R. (2016). Identifying an optimal analysis level in multiscalar regionalization: A study case of social distress in Greater Santiago. Comput. Environ. Urban Syst., 56, 14–24.
toggle visibility
Moreno, S., Pereira, J., & Yushimito, W. (2020). A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution. Ann. Oper. Res., 286(1-2), 87–117.
toggle visibility
Pham, D. T., & Ruz, G. A. (2009). Unsupervised training of Bayesian networks for data clustering. Proc. R. Soc. A-Math. Phys. Eng. Sci., 465(2109), 2927–2948.
toggle visibility
Ruz, G. A. (2016). Improving the performance of inductive learning classifiers through the presentation order of the training patterns. Expert Syst. Appl., 58, 1–9.
toggle visibility
Ruz, G. A., & Pham, D. T. (2012). NBSOM: The naive Bayes self-organizing map. Neural Comput. Appl., 21(6), 1319–1330.
toggle visibility
Ruz, G. A., Varas, S., & Villena, M. (2013). Policy making for broadband adoption and usage in Chile through machine learning. Expert Syst. Appl., 40(17), 6728–6734.
toggle visibility