|
Averbakh, I., & Pereira, J. (2018). Lateness Minimization in Pairwise Connectivity Restoration Problems. INFORMS J. Comput., 30(3), 522–538.
Abstract: A network is given whose edges need to be constructed (or restored after a disaster). The lengths of edges represent the required construction/restoration times given available resources, and one unit of length of the network can be constructed per unit of time. All points of the network are accessible for construction at any time. For each pair of vertices, a due date is given. It is required to find a construction schedule that minimizes the maximum lateness of all pairs of vertices, where the lateness of a pair is the difference between the time when the pair becomes connected by an already constructed path and the pair's due date. We introduce the problem and analyze its structural properties, present a mixed-integer linear programming formulation, develop a number of lower bounds that are integrated in a branch-and-bound algorithm, and discuss results of computational experiments both for instances based on randomly generated networks and for instances based on 2010 Chilean earthquake data.
|
|
|
Ljubic, I., & Moreno, E. (2018). Outer approximation and submodular cuts for maximum capture facility location problems with random utilities. Eur. J. Oper. Res., 266(1), 46–56.
Abstract: We consider a family of competitive facility location problems in which a “newcomer” company enters the market and has to decide where to locate a set of new facilities so as to maximize its market share. The multinomial logit model is used to estimate the captured customer demand. We propose a first branch-and-cut approach for this family of difficult mixed-integer non-linear problems. Our approach combines two types of cutting planes that exploit particular properties of the objective function: the first one are the outer-approximation cuts and the second one are the submodular cuts. The approach is computationally evaluated on three datasets from the recent literature. The obtained results show that our new branch-and-cut drastically outperforms state-of-the-art exact approaches, both in terms of the computing times, and in terms of the number of instances solved to optimality. (C) 2017 Elsevier B.V. All rights reserved.
|
|