|
Goles, E., Montalva-Medel, M., Montealegre, P., & Rios-Wilson, M. (2022). On the complexity of generalized Q2R automaton. Adv. Appl. Math., 138, 102355.
Abstract: We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of non-polynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequential update scheme. Furthermore, we show that the decision problem consisting in determine if a given node in the network changes its state is P-Hard.
|
|
|
Goles, E., Montealegre, P., Perrot, K., & Theyssier, G. (2018). On the complexity of two-dimensional signed majority cellular automata. J. Comput. Syst. Sci., 91, 1–32.
Abstract: We study the complexity of signed majority cellular automata on the planar grid. We show that, depending on their symmetry and uniformity, they can simulate different types of logical circuitry under different modes. We use this to establish new bounds on their overall complexity, concretely: the uniform asymmetric and the non-uniform symmetric rules are Turing universal and have a P-complete prediction problem; the non-uniform asymmetric rule is intrinsically universal; no symmetric rule can be intrinsically universal. We also show that the uniform asymmetric rules exhibit cycles of super-polynomial length, whereas symmetric ones are known to have bounded cycle length. (C) 2017 Elsevier Inc. All rights reserved.
|
|
|
Goles, E., Moreira, A., & Rapaport, I. (2011). Communication complexity in number-conserving and monotone cellular automata. Theor. Comput. Sci., 412(29), 3616–3628.
Abstract: One third of the elementary cellular automata (CAs) are either number-conserving (NCCAs) or monotone (increasing or decreasing). In this paper we prove that, for all of them, we can find linear or constant communication protocols for the prediction problem. In other words, we are able to give a succinct description for their dynamics. This is not necessarily true for general NCCAs. In fact, we also show how to explicitly construct, from any CA, a new NCCA which preserves the original communication complexity. (C) 2011 Elsevier B.V. All rights reserved.
|
|
|
Golovach, P. A., Heggernes, P., Lima, P. T., & Montealegre, P. (2020). Finding connected secluded subgraphs. J. Comput. Syst. Sci., 113, 101–124.
Abstract: Problems related to finding induced subgraphs satisfying given properties form one of the most studied areas within graph algorithms. However, for many applications, it is desirable that the found subgraph has as few connections to the rest of the graph as possible, which gives rise to the SECLUDED Pi-SUBGRAPH problem. Here, input k is the size of the desired subgraph, and input t is a limit on the number of neighbors this subgraph has in the rest of the graph. This problem has been studied from a parameterized perspective, and unfortunately it turns out to be W[1]-hard for many graph properties Pi, even when parameterized by k + t. We show that the situation changes when we are looking for a connected induced subgraph satisfying Pi. In particular, we show that the CONNECTED SECLUDED Pi-SUBGRAPH problem is FPT when parameterized by just t for many important graph properties Pi. (C) 2020 Elsevier Inc. All rights reserved.
|
|
|
Mascareno, A., Goles, E., & Ruz, G. A. (2016). Crisis in complex social systems: A social theory view illustrated with the chilean case. Complexity, 21(S2), 13–23.
Abstract: The article argues that crises are a distinctive feature of complex social systems. A quest for connectivity of communication leads to increase systems' own robustness by constantly producing further connections. When some of these connections have been successful in recent operations, the system tends to reproduce the emergent pattern, thereby engaging in a non-reflexive, repetitive escalation of more of the same communication. This compulsive growth of systemic communication in crisis processes, or logic of excess, resembles the dynamic of self-organized criticality. Accordingly, we first construct the conceptual foundations of our approach. Second, we present three core assumptions related to the generative mechanism of social crises, their temporal transitions (incubation, contagion, restructuring), and the suitable modeling techniques to represent them. Third, we illustrate the conceptual approach with a percolation model of the crisis in Chilean education system. (c) 2016 Wiley Periodicals, Inc. Complexity 21: 13-23, 2016
|
|
|
Montealegre, P., Perez-Salazar, S., Rapaport, I., & Todinca, I. (2020). Graph reconstruction in the congested clique. J. Comput. Syst. Sci., 113, 1–17.
Abstract: In this paper we study the reconstruction problem in the congested clique model. Given a class of graphs g, the problem is defined as follows: if G is not an element of g, then every node must reject; if G is an element of g, then every node must end up knowing all the edges of G. The cost of an algorithm is the total number of bits received by any node through one link. It is not difficult to see that the cost of any algorithm that solves this problem is Omega(log vertical bar g(n)vertical bar/n), where g(n) is the subclass of all n-node labeled graphs in g. We prove that the lower bound is tight and that it is possible to achieve it with only 2 rounds. (C) 2020 Elsevier Inc. All rights reserved.
|
|