
Bitar, N., Goles, E., & Montealegre, P. (2022). COMPUTATIONAL COMPLEXITY OF BIASED DIFFUSIONLIMITED AGGREGATION. SIAM Discret. Math., 36(1), 823–866.
Abstract: DiffusionLimited Aggregation (DLA) is a clustergrowth model that consists in a set of particles that are sequentially aggregated over a twodimensional grid. In this paper, we introduce a biased version of the DLA model, in which particles are limited to move in a subset of possible directions. We denote by kDLA the model where the particles move only in k possible directions. We study the biased DLA model from the perspective of Computational Complexity, defining two decision problems The first problem is Prediction, whose input is a site of the grid c and a sequence S of walks, representing the trajectories of a set of particles. The question is whether a particle stops at site c when sequence S is realized. The second problem is Realization, where the input is a set of positions of the grid, P. The question is whether there exists a sequence S that realizes P, i.e. all particles of S exactly occupy the positions in P. Our aim is to classify the Prediciton and Realization problems for the different versions of DLA. We first show that Prediction is PComplete for 2DLA (thus for 3DLA). Later, we show that Prediction can be solved much more efficiently for 1DLA. In fact, we show that in that case the problem is NLComplete. With respect to Realization, we show that restricted to 2DLA the problem is in P, while in the 1DLA case, the problem is in L.



Gaspers, S., Liedloff, M., Stein, M., & Suchan, K. (2015). Complexity of splits reconstruction for lowdegree trees. Discret Appl. Math., 180, 89–100.
Abstract: Given a vertexweighted tree T, the split of an edge em T is the minimum over the weights of the two trees obtained by removing e from T, where the weight of a tree is the sum of weights of its vertices. Given a set of weighted vertices V and a multiset of integers s, we consider the problem of constructing a tree on V whose splits correspond to s. The problem is known to be NPcomplete, even when all vertices have unit weight and the maximum vertex degree of T is required to be at most 4. We show that the problem is strongly NPcomplete when T is required to be a path, the problem is NPcomplete when all vertices have unit weight and the maximum degree of T is required to be at most 3, and it remains NPcomplete when all vertices have unit weight and T is required to be a caterpillar with unbounded hair length and maximum degree at most 3. We also design polynomial time algorithms for the variant where T is required to be a path and the number of distinct vertex weights is constant, and the variant where all vertices have unit weight and T has a constant number of leaves. The latter algorithm is not only polynomial when the number of leaves, k, is a constant, but also is a fixedparameter algorithm for parameter k. Finally, we shortly discuss the problem when the vertex weights are not given but can be freely chosen by an algorithm. The considered problem is related to building libraries of chemical compounds used for drug design and discovery. In these inverse problems, the goal is to generate chemical compounds having desired structural properties, as there is a strong relation between structural invariants of the particles, such as the Wiener index and, less directly, the problem under consideration here, and physicochemical properties of the substance. (C) 2014 Elsevier B.V. All rights reserved.



Goles, E., & Montealegre, P. (2014). Computational complexity of threshold automata networks under different updating schemes. Theor. Comput. Sci., 559, 3–19.
Abstract: Given a threshold automata network, as well as an updating scheme over its vertices, we study the computational complexity associated with the prediction of the future state of a vertex. More precisely, we analyze two classes of local functions: the majority and the ANDOR rule (vertices take the AND or the OR logic functions over the state of its neighborhoods). Depending on the updating scheme, we determine the complexity class (NC, P, NP, PSPACE) where the prediction problem belongs. (C) 2014 Elsevier B.V. All rights reserved.



Goles, E., & Montealegre, P. (2015). The complexity of the majority rule on planar graphs. Adv. Appl. Math., 64, 111–123.
Abstract: We study the complexity of the majority rule on planar automata networks. We reduce a special case of the Monotone Circuit Value Problem to the prediction problem of determining if a vertex of a planar graph will change its state when the network is updated with the majority rule. (C) 2014 Elsevier Inc. All rights reserved.



Goles, E., & Montealegre, P. (2020). The complexity of the asynchronous prediction of the majority automata. Inf. Comput., 274(SI).
Abstract: We consider the asynchronous prediction problem for some automaton as the one consisting in determining, given an initial configuration, if there exists a nonzero probability that some selected site changes its state, when the network is updated picking one site at a time uniformly at random. We show that for the majority automaton, the asynchronous prediction problem is in NC in the twodimensional lattice with von Neumann neighborhood. Later, we show that in three or more dimensions the problem is NPComplete.



Goles, E., Lobos, F., Montealegre, P., Ruivo, E. L. P., & de Oliveira, P. P. B. (2020). Computational Complexity of the Stability Problem for Elementary Cellular Automata. J. Cell. Autom., 15(4), 261–304.
Abstract: Given an elementary cellular automaton and a cell v, we define the stability decision problem as the determination of whether or not the state of cell v will ever change, at least once, during the time evolution of the rule, over a finite input configuration. Here, we perform the study of the entire elementary cellular automata rule space, for the two possible decision cases of the problem, namely, changes in v from state 0 to 1 (0 > 1), and the other way round (1 > 0). Out of the 256 elementary cellular automata, we show that for all of them, at least one of the two decision problems is in the NC complexity class.



Goles, E., Maldonado, D., & Montealegre, P. (2021). On the complexity of asynchronous freezing cellular automata. Inf. Comput., 281, 104764.
Abstract: In this paper we study the family of freezing cellular automata (FCA) in the context of asynchronous updating schemes. A cellular automaton is called freezing if there exists an order of its states, and the transitions are only allowed to go from a lower to a higher state. A cellular automaton is asynchronous if at each timestep only one cell is updated. We define the problem ASYNCUNSTABILITY, which consists in deciding there exists a sequential updating scheme that changes the state of a given cell.
We begin showing that ASYNCUNSTABILITY is in NL for any onedimensional FCA. Then we focus on the family of lifelike freezing CA (LFCA). We study the complexity of ASYNCUNSTABILITY for all LFCA in the triangular and square grids, showing that almost all of them can be solved in NC, except for one rule for which the problem is NPComplete. (C) 2021 Elsevier Inc. All rights reserved.



Goles, E., Maldonado, D., Montealegre, P., & Ollinger, N. (2020). On the complexity of the stability problem of binary freezing totalistic cellular automata. Inf. Comput., 274, 21 pp.
Abstract: In this paper we study the family of twostate Totalistic Freezing Cellular Automata (TFCA) defined over the triangular and square grids with von Neumann neighborhoods. We say that a Cellular Automaton is Freezing and Totalistic if the active cells remain unchanged, and the new value of an inactive cell depends only on the sum of its active neighbors. We classify all the Cellular Automata in the class of TFCA, grouping them in five different classes: the Trivial rules, Turing Universal rules, Algebraic rules, Topological rules and Fractal Growing rules. At the same time, we study in this family the STABILITY problem, consisting in deciding whether an inactive cell becomes active, given an initial configuration. We exploit the properties of the automata in each group to show that: For Algebraic and Topological Rules the STABILITY problem is in NC. For Turing Universal rules the STABILITY problem is PComplete. (C) 2020 Elsevier Inc. All rights reserved.



Goles, E., MontalvaMedel, M., Montealegre, P., & RiosWilson, M. (2022). On the complexity of generalized Q2R automaton. Adv. Appl. Math., 138, 102355.
Abstract: We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of nonpolynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequential update scheme. Furthermore, we show that the decision problem consisting in determine if a given node in the network changes its state is PHard.



Goles, E., Montealegre, P., Perrot, K., & Theyssier, G. (2018). On the complexity of twodimensional signed majority cellular automata. J. Comput. Syst. Sci., 91, 1–32.
Abstract: We study the complexity of signed majority cellular automata on the planar grid. We show that, depending on their symmetry and uniformity, they can simulate different types of logical circuitry under different modes. We use this to establish new bounds on their overall complexity, concretely: the uniform asymmetric and the nonuniform symmetric rules are Turing universal and have a Pcomplete prediction problem; the nonuniform asymmetric rule is intrinsically universal; no symmetric rule can be intrinsically universal. We also show that the uniform asymmetric rules exhibit cycles of superpolynomial length, whereas symmetric ones are known to have bounded cycle length. (C) 2017 Elsevier Inc. All rights reserved.

