|
Gonzalez, H., A., & Rojas, F. (2021). The structure of IR divergences in celestial gluon amplitudes. J. High Energy Phys., (6), 171.
Abstract: The all-loop resummation of SU(N) gauge theory amplitudes is known to factorize into an IR-divergent (soft and collinear) factor and a finite (hard) piece. The divergent factor is universal, whereas the hard function is a process-dependent quantity.We prove that this factorization persists for the corresponding celestial amplitudes. Moreover, the soft/collinear factor becomes a scalar correlator of the product of renormalized Wilson lines defined in terms of celestial data. Their effect on the hard amplitude is a shift in the scaling dimensions by an infinite amount, proportional to the cusp anomalous dimension. This leads us to conclude that the celestial-IR-safe gluon amplitude corresponds to a expectation value of operators dressed with Wilson line primaries. These results hold for finite N.In the large N limit, we show that the soft/collinear correlator can be described in terms of vertex operators in a Coulomb gas of colored scalar primaries with nearest neighbor interactions. In the particular cases of four and five gluons in planar N = 4 SYM theory, where the hard factor is known to exponentiate, we establish that the Mellin transform converges in the UV thanks to the fact that the cusp anomalous dimension is a positive quantity. In other words, the very existence of the full celestial amplitude is owed to the positivity of the cusp anomalous dimension.
|
|
|
Gonzalez, H. A., Puhm, A.,, & Rojas, F. (2020). Loop corrections to celestial amplitudes. Phys. Rev. D., 102, 126027.
Abstract: We study the effect of loop corrections to conformal correlators on the celestial sphere at null infinity. We first analyze finite one-loop celestial amplitudes in pure Yang-Mills theory and Einstein gravity. We then turn to our main focus: infrared divergent loop amplitudes in planar N=4
super–Yang-Mills theory. We compute the celestial one-loop amplitude in dimensional regularization and show that it can be recast as an operator acting on the celestial tree-level amplitude. This extends to any loop order, and the resummation of all planar loops enables us to write down an expression for the all-loop celestial amplitude. Finally, we show that the exponentiated all-loop expression given by the Bern-Dixon-Smirnov (BDS) formula gets promoted on the celestial sphere to an operator acting on the tree-level conformal correlation function, thus yielding, the celestial BDS formula.
|
|
|
Nastase, H., Rojas, F., & Rubio, C. (2022). Celestial IR divergences in general most-subleading-color gluon and gravity amplitudes. J. High Energy Phys., (1), 136.
Abstract: Gluon amplitudes at most-subleading order in the 1/N expansion share a remarkable simplicity with graviton amplitudes: collinear divergences are completely absent in both and, as a consequence, their full IR behavior arises from soft gluon/graviton exchange among the external states. In this paper we study the effect of all-loop IR divergences of celestial most-subleading color gluon amplitudes and their similarities with the celestial gravity case. In particular, a simple celestial exponentiation formula for the dipole part can be written. We also analize how this exponentiation is modified by non-dipole contributions. Finally we also show that, in the Regge limit, the soft factor satisfies the Knizhnik-Zamolodchikov equation hinting at the possibility that, in this limit, an effective Wess-Zumino-Witten model would describe the dynamics of the infrared sector.
|
|