Home  << 1 >> 
Contreras, M., & Pena, J. P. (2019). The quantum dark side of the optimal control theory. Physica A, 515, 450–473.
Abstract: In a recent article, a generic optimal control problem was studied from a physicist's point of view (Contreras et al. 2017). Through this optic, the Pontryagin equations are equivalent to the Hamilton equations of a classical constrained system. By quantizing this constrained system, using the right ordering of the operators, the corresponding quantum dynamics given by the Schrodinger equation is equivalent to that given by the HamiltonJacobiBellman equation of Bellman's theory. The conclusion drawn there were based on certain analogies between the equations of motion of both theories. In this paper, a closer and more detailed examination of the quantization problem is carried out, by considering three possible quantization procedures: right quantization, left quantization, and Feynman's path integral approach. The Bellman theory turns out to be the classical limit h > 0 of these three different quantum theories. Also, the exact relation of the phase S(x, t) of the wave function Psi(x, t) = e(i/hS(x,t)) of the quantum theory with Bellman's cost function J(+)(x, t) is obtained. In fact, S(x, t) satisfies a 'conjugate' form of the HamiltonJacobiBellman equation, which implies that the cost functional J(+)(x, t) must necessarily satisfy the usual HamiltonJacobiBellman equation. Thus, the Bellman theory effectively corresponds to a quantum view of the optimal control problem. (C) 2018 Elsevier B.V. All rights reserved.

Contreras, M., Pellicer, R., & Villena, M. (2017). Dynamic optimization and its relation to classical and quantum constrained systems. Physica A, 479, 12–25.
Abstract: We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two secondclass constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closedloop lambdastrategy, the optimality condition for the action gives a consistency relation, which is associated to the HamiltonJacobiBellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Psi (x, t) = e(is(x,t)) in the quantum Schrodinger equation, a nonlinear partial equation is obtained for the S function. For the righthand side quantization, this is the HamiltonJacobiBellman equation, when S(x, t) is identified with the optimal value function. Thus, the HamiltonJacobiBellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem. (C) 2017 Elsevier B.V. All rights reserved.
