Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Remila, E., & Todinca, I. (2021). Compact Distributed Certification of Planar Graphs. Algorithmica, 83(7), 2215–2244.
Abstract: Naor M., Parter M., Yogev E.: (The power of distributed verifiers in interactive proofs. In: 31st ACMSIAM symposium on discrete algorithms (SODA), pp 1096115, 2020. https://doi.org/10.1137/1.9781611975994.67) have recently demonstrated the existence of a distributed interactive proof for planarity (i.e., for certifying that a network is planar), using a sophisticated generic technique for constructing distributed IP protocols based on sequential IP protocols. The interactive proof for planarity is based on a distributed certification of the correct execution of any given sequential lineartime algorithm for planarity testing. It involves three interactions between the prover and the randomized distributed verifier (i.e., it is a dMAM protocol), and uses small certificates, on O(log n) bits in nnode networks. We show that a single interaction with the prover suffices, and randomization is unecessary, by providing an explicit description of a prooflabeling scheme for planarity, still using certificates on just O(log n) bits. We also show that there are no prooflabeling schemesin fact, even no locally checkable proofsfor planarity using certificates on o(log n) bits.

Goles, E., Leal, L., Montealegre, P., Rapaport, I., & RiosWilson, M. (2023). Distributed maximal independent set computation driven by finitestate dynamics. Int. J. Parallel Emergent Distrib. Syst., Early Access.
Abstract: A Maximal Independent Set (MIS) is an inclusion maximal set of pairwise nonadjacent vertices. The computation of an MIS is one of the core problems in distributed computing. In this article, we introduce and analyze a finitestate distributed randomized algorithm for computing a Maximal Independent Set (MIS) on arbitrary undirected graphs. Our algorithm is selfstabilizing (reaches a correct output on any initial configuration) and can be implemented on systems with very scarce conditions. We analyze the convergence time of the proposed algorithm, showing that in many cases the algorithm converges in logarithmic time with high probability.

Nisse, N., Rapaport, I., & Suchan, K. (2012). Distributed computing of efficient routing schemes in generalized chordal graphs. Theor. Comput. Sci., 444, 17–27.
Abstract: Efficient algorithms for computing routing tables should take advantage of particular properties arising in large scale networks. Two of them are of special interest: low (logarithmic) diameter and high clustering coefficient. High clustering coefficient implies the existence of few large induced cycles. Considering this fact, we propose here a routing scheme that computes short routes in the class of kchordal graphs, i.e., graphs with no induced cycles of length more than k. In the class of kchordal graphs, our routing scheme achieves an additive stretch of at most k – 1, i.e., for all pairs of nodes, the length of the route never exceeds their distance plus k – 1. In order to compute the routing tables of any nnode graph with diameter D we propose a distributed algorithm which uses O(log n)bit messages and takes O(D) time. The corresponding routing scheme achieves the stretch of k – 1 on kchordal graphs. We then propose a routing scheme that achieves a better additive stretch of 1 in chordal graphs (notice that chordal graphs are 3chordal graphs). In this case, distributed computation of routing tables takes O(min{Delta D, n}) time, where Delta is the maximum degree of the graph. Our routing schemes use addresses of size log n bits and local memory of size 2(d1) log n bits per node of degree d. (c) 2012 Elsevier B.V. All rights reserved.
