toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Aracena, J., Demongeot, J., Fanchon, E., & Montalva, M. (2013). On the number of different dynamics in Boolean networks with deterministic update schedules. Math. Biosci., 242(2), 188–194.
toggle visibility
Canessa, E., & Chaigneau, S. (2014). The dynamics of social agreement according to Conceptual Agreement Theory. Qual. Quant., 48(6), 3289–3309.
toggle visibility
Dumett, M. A., & Cominetti, R. (2018). On The Stability Of An Adaptive Learning Dynamics In Traffic Games. J. Dyn. Games, 5(4), 265–282.
toggle visibility
Goles, E., Montalva, M., & Ruz, G. A. (2013). Deconstruction and Dynamical Robustness of Regulatory Networks: Application to the Yeast Cell Cycle Networks. Bull. Math. Biol., 75(6), 939–966.
toggle visibility
Goles, E., Montealegre, P., Perrot, K., & Theyssier, G. (2018). On the complexity of two-dimensional signed majority cellular automata. J. Comput. Syst. Sci., 91, 1–32.
toggle visibility
Gonzalez, E., & Villena, M. J. (2020). On the spatial dynamics of vaccination: A spatial SIRS-V model. Comput. Math. Appl., 80(5), 733–743.
toggle visibility
Kapitanov, G., Alvey, C., Vogt-Geisse, K., & Feng, Z. L. (2015). An Age-Structured Model For The Coupled Dynamics Of Hiv And Hsv-2. Math. Biosci. Eng., 12(4), 803–840.
toggle visibility
Lagos, F., Schreiber, M. R., Parsons, S. G., Zurlo, A., Mesa, D., Gansicke, B. T., et al. (2020). The White Dwarf Binary Pathways Survey -III. Contamination from hierarchical triples containing a white dwarf. Mon. Not. Roy. Astron. Soc., 494(1), 915–922.
toggle visibility
Rodriguez-Valdecantos, G., Manzano, M., Sanchez, R., Urbina, F., Hengst, M. B., Lardies, M. A., et al. (2017). Early successional patterns of bacterial communities in soil microcosms reveal changes in bacterial community composition and network architecture, depending on the successional condition. Appl. Soil Ecol., 120, 44–54.
toggle visibility
Ruivo, E. L. P., Montalva-Medel, M., de Oliveira, P. P. B., & Perrot, K. (2018). Characterisation of the elementary cellular automata in terms of their maximum sensitivity to all possible asynchronous updates. Chaos Solitons Fractals, 113, 209–220.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print