Pina, S., Candia-Onfray, C., Hassan, N., Jara-Ulloa, P., Contreras, D., & Salazar, R. (2021). Glassy Carbon Electrode Modified with C/Au Nanostructured Materials for Simultaneous Determination of Hydroquinone and Catechol in Water Matrices. Chemosensors, 9(5), 88.
Abstract: The simultaneous determination of hydroquinone and catechol was conducted in aqueous and real samples by means of differential pulse voltammetry (DPV) using a glassy carbon electrode modified with Gold Nanoparticles (AuNP) and functionalized multiwalled carbon nanotubes by drop coating. A good response was obtained in the simultaneous determination of both isomers through standard addition to samples prepared with analytical grade water and multivariate calibration by partial least squares (PLS) in winery wastewater fortified with HQ and CT from 4.0 to 150.00 mu M. A sensitivity of 0.154 mu A mu M-1 and 0.107 mu A mu M-1, and detection limits of 4.3 and 3.9 mu M were found for hydroquinone and catechol, respectively. We verified the reliability of the developed method by simultaneously screening analytes in spiked tap water and industrial wastewater, achieving recoveries over 80%. In addition, this paper demonstrates the applicability of chemometric tools for the simultaneous quantification of both isomers in real matrices, obtaining prediction errors of lower than 10% in fortified wastewater.
|
Pina, S., Sandoval, A. M., Jara-Ulloa, P., Contreras, D., Hassan, N., Coreno, O., et al. (2022). Nanostructured electrochemical sensor applied to the electrocoagulation of arsenite in WWTP effluent. Chemosphere, 306, 135530.
Abstract: A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 mu g L-1 with a detection limit of 0.39 mu g L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 mu g L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm(-2) in less than 3 min of treatment.
|
Vinoth, V., Kaimal, R., Selvamani, M., Michael, R., Pugazhenthiran, N., Mangalaraja, R. V., et al. (2023). Synergistic impact of nanoarchitectured GQDs-AgNCs(APTS) modified glassy carbon electrode in the electrochemical detection of guanine and adenine. J. Electroanal. Chem., 934, 117302.
Abstract: In this work, a facile green approach for the synthesis of graphene quantum dots (GQDs) embedded on silicate network silver nanocrystals (GQDs-AgNCs(APTS)) is reported. Moreover, glassy carbon-GC electrodes were mod-ified with the prepared nanocomposite containing graphene quantum dots supported on silver nanocrystals (GQDs-AgNCs(APTS)) and applied for simultaneous detection of guanine (GA) and adenine (AD). The chemically modified electrode was assessed during the determination of purine bases by cyclic voltammetry-CV and dif-ferential pulse voltammetry-DPV. The incorporation of GQDs-AgNCs(APTS) nanocomposites over the surface of the GC electrode considerably enhances the anodic peak currents and decreases the adenine and guanine peak potentials. Compared to other electrodes, GQDs-AgNCs(APTS)/GC improved the electrochemical behavior towards the detection of adenine and guanine. At optimal conditions, calibration curves were obtained by DPV being linear in the range of 0.1-6.0 mu M and 0.1-5.0 mu M for guanine and adenine, respectively. The detec-tion limits of both guanine and adenine were estimated as 0.1 mu M. Additionally, interferences analyses were performed on the existence of other interferent compounds. Furthermore, the method developed for the iden-tification of GA and AD was proved using fish sperm DNA samples.
|