|
Dumais, J. (2021). Mechanics and hydraulics of pollen tube growth. New Phytol., 232(4), 1549–1565.
Abstract: All kingdoms of life have evolved tip-growing cells able to mine their environment or deliver cargo to remote targets. The basic cellular processes supporting these functions are understood in increasing detail, but the multiple interactions between them lead to complex responses that require quantitative models to be disentangled. Here, I review the equations that capture the fundamental interactions between wall mechanics and cell hydraulics starting with a detailed presentation of James Lockhart's seminal model. The homeostatic feedbacks needed to maintain a steady tip velocity are then shown to offer a credible explanation for the pulsatile growth observed in some tip-growing cells. Turgor pressure emerges as a central variable whose role in the morphogenetic process has been a source of controversy for more than 50 yr. I argue that recasting Lockhart's work as a process of chemical stress relaxation can clarify how cells control tip growth and help us internalise the important but passive role played by turgor pressure in the morphogenetic process.
|
|
|
Gacitua, L., Olivares, D., Negrete-Pincetic, M., & Lorca, A. (2023). The role of fast-acting energy storage for contingency grid support in the transmission planning. Energy, 283, 128465.
Abstract: This paper investigates the role of fast-acting energy storage systems in transmission expansion planning, by allowing higher transfers through the network during normal operation. This is achieved by considering the ability of energy storage systems to provide real and reactive power reserves after forced single-circuit outages to prevent line overloading and voltage level violations in post-contingency states, and by applying the corrective N – 1 security criterion. A computational tool is presented to solve the multi-year transmission expansion problem with multiple scenarios of availability of renewable energy sources. The model is solved using the FICO Xpress software. The 2022-2037 Chilean transmission expansion plan is used as a case study, given the high need for flexibility to integrate 29.5 GW of new solar and wind generation capacity several hundred kilometers from its load center, with a system peak demand of 16.5 GW. The results obtained show that fast-acting energy storage systems reduce the cost of the investment plan by USD 712 million (-18%) mainly because it requires 5 GWh less of conventional storage capacity (-19%), allowing the system operator to increase the usage of the existing transmission network, and providing the central planner with a deferral option for the construction of new transmission lines.
|
|
|
Go, R. S., Munoz, F. D., & Watson, J. P. (2016). Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards. Appl. Energy, 183, 902–913.
Abstract: Worldwide, environmental regulations such as Renewable Portfolio Standards (RPSs) are being broadly adopted to promote renewable energy investments. With corresponding increases in renewable energy deployments, there is growing interest in grid-scale energy storage systems (ESS) to provide the flexibility needed to efficiently deliver renewable power to consumers. Our contribution in this paper is to introduce a unified generation, transmission, and bulk ESS expansion planning model subject to an RPS constraint, formulated as a two-stage stochastic mixed-integer linear program (MILP) optimization model, which we then use to study the impact of co-optimization and evaluate the economic interaction between investments in these three asset classes in achieving high renewable penetrations. We present numerical case studies using the 24-bus IEEE RTS-96 test system considering wind and solar as available renewable energy resources, and demonstrate that up to $180 million/yr in total cost savings can result from the co-optimization of all three assets, relative to a situation in which no ESS investment options are available. Surprisingly, we find that co-optimized bulk ESS investments provide significant economic value through investment deferrals in transmission and generation capacity, but very little savings in operational cost. Finally, we observe that planning transmission and generation infrastructure first and later optimizing ESS investments as is common in industry captures at most 1.7% ($3 million/yr) of the savings that result from co-optimizing all assets simultaneously. (C) 2016 Elsevier Ltd. All rights reserved.
|
|
|
Gonzalez, H. A., Puhm, A.,, & Rojas, F. (2020). Loop corrections to celestial amplitudes. Phys. Rev. D., 102, 126027.
Abstract: We study the effect of loop corrections to conformal correlators on the celestial sphere at null infinity. We first analyze finite one-loop celestial amplitudes in pure Yang-Mills theory and Einstein gravity. We then turn to our main focus: infrared divergent loop amplitudes in planar N=4
super–Yang-Mills theory. We compute the celestial one-loop amplitude in dimensional regularization and show that it can be recast as an operator acting on the celestial tree-level amplitude. This extends to any loop order, and the resummation of all planar loops enables us to write down an expression for the all-loop celestial amplitude. Finally, we show that the exponentiated all-loop expression given by the Bern-Dixon-Smirnov (BDS) formula gets promoted on the celestial sphere to an operator acting on the tree-level conformal correlation function, thus yielding, the celestial BDS formula.
|
|
|
Kristiansen, M., Munoz, F. D., Oren, S., & Korpas, M. (2018). A Mechanism for Allocating Benefits and Costs from Transmission Interconnections under Cooperation: A Case Study of the North Sea Offshore Grid. Energy J., 39(6), 209–234.
Abstract: We propose a generic mechanism for allocating the benefits and costs that result from the development of international transmission interconnections under a cooperative agreement. The mechanism is based on a planning model that considers generation investments as a response to transmission developments, and the Shapley Value from cooperative game theory. This method provides a unique allocation of benefits and costs considering each country's average incremental contribution to the cooperative agreement. The allocation satisfies an axiomatic definition of fairness. We demonstrate our results for three planned transmission interconnections in the North Sea and show that the proposed mechanism can be used as a basis for defining a set of Power Purchase Agreements among countries. This achieves the desired final distribution of economic benefits and costs from transmission interconnections as countries trade power over time. We also show that, in this case, the proposed allocation is stable.
|
|
|
Tapia, T., Lorca, A., Olivares, D., Negrete-Pincetic, M., & Lamadrid, A. J. (2021). A robust decision-support method based on optimization and simulation for wildfire resilience in highly renewable power systems. Eur. J. Oper. Res., 294(2), 723–733.
Abstract: Wildfires can pose a major threat to the secure operation of power networks. Chile, California, and Australia have suffered from recent wildfires that have induced considerable power supply cuts. Further, as power systems move to a significant integration of variable renewable energy sources, successfully managing the impact of wildfires on the power supply can become even more challenging due to the joint uncertainty in wildfire trajectories and the power injections from wind and solar farms. Motivated by this, this paper develops a practical decision-support approach that concatenates a stochastic wildfire simulation method with an attacker-defender model that aims to find a worst-case realization for (i) transmission line and generator contingencies, out of those that can potentially be affected by a given wildfire scenario, and for (ii) wind and solar power trajectories, based on a max-min structure where the inner min problem represents a best adaptive response on generator dispatch actions. Further, this paper proposes an evaluation framework to assess the power supply security of various power system topology configurations, under the assumption of limited transmission switching capabilities, and based on the simulation of several wildfire evolution scenarios. Extensive computational experiments are carried out on two representations of the Chilean power network with up to 278 buses, showing the practical effectiveness of the proposed approach for enhancing wildfire resilience in highly renewable power systems.
|
|