Asenjo, F. A., & Hojman, S. A. (2017). Do electromagnetic waves always propagate along null geodesics? Class. Quantum Gravity, 34(20), 12 pp.
Abstract: We find exact solutions to Maxwell equations written in terms of fourvector potentials in nonrotating, as well as in Gdel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled secondorder differential equations for combinations of the components of the fourvector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in nonrotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gdel and Kerr spacetimes do not exhibit that behavior.

Asenjo, F. A., Hojman, S. A., VillegasMartinez, B. M., MoyaCessa, H. M., & SotoEguibar, F. (2024). Supersymmetric behavior of polarized electromagnetic waves in anisotropic media. Mod. Phys. Lett. A, 39(06), 2450013.
Abstract: A medium with specific anisotropic refractive indices can induce a supersymmetric behavior in the propagation of polarized electromagnetic waves, in an analog fashion to a quantum mechanical system. The polarizations of the wave are the ones which behave as superpartners from each other. For this to happen, the anisotropy of the medium must be transverse to the direction of propagation of the wave, with different refractive indices along the direction of each polarization, being in this way a biaxial medium. These refractive indices must be complex and follow a very specific relation in order to trigger the supersymetric response of the electromagnetic wave, each of them with spatial dependence on the longitudinal (propagation) direction of the wave. In this form, in these materials, different polarized light can be used to test supersymmetry in an optical fashion.
