Velazquez, R., Pissaloux, E., Rodrigo, P., Carrasco, M., Giannoccaro, N. I., & Lay-Ekuakille, A. (2018). An Outdoor Navigation System for Blind Pedestrians Using GPS and Tactile-Foot Feedback. Appl. Sci.-Basel, 8(4), 15 pp.
Abstract: This paper presents a novel, wearable navigation system for visually impaired and blind pedestrians that combines a global positioning system (GPS) for user outdoor localization and tactile-foot stimulation for information presentation. Real-time GPS data provided by a smartphone are processed by dedicated navigation software to determine the directions to a destination. Navigational directions are then encoded as vibrations and conveyed to the user via a tactile display that inserts into the shoe. The experimental results showed that users were capable of recognizing with high accuracy the tactile feedback provided to their feet. The preliminary tests conducted in outdoor locations involved two blind users who were guided along 380-420 m predetermined pathways, while sharing the space with other pedestrians and facing typical urban obstacles. The subjects successfully reached the target destinations. The results suggest that the proposed system enhances independent, safe navigation of blind pedestrians and show the potential of tactile-foot stimulation in assistive devices.
|
Velazquez-Guerrero, R., Pissaloux, E., Del-Valle-Soto, C., Carrasco-Zambrano, M. A., Mendoza-Andrade, A., & Varona-Salazar, J. (2021). Mobility of blind people using the smartpho-ne's GPS and a wearable tactile display. Dyna, 96(1), 98–104.
Abstract: This paper presents a novel wearable system devoted to assist the mobility of blind and visually impaired people in urban environments with the simple use of a smartphone and tactile feedback. The system exploits the positioning data provided by the smartphone's GPS sensor to locate in real-time the user in the environment and to determine the directions to a destination. The resulting navigational directions are encoded as vibrations and conveyed to the user via an on-shoe tactile display. To validate the pertinence of the proposed system, two experiments were conducted. The first one involved a group of 20 voluntary normally sighted subjects that were requested to recognize the navigational instructions displayed by the tactile-foot device. The results show high recognition rates for the task. The second experiment consisted of guiding two blind voluntary subjects along public urban spaces to target destinations. Results show that the task was successfully accomplished and suggest that the system enhances independent safe navigation of people with visually impairments. Moreover, results show the potentials of smartphones and tactile-foot devices in assistive technology.
|