Home | << 1 2 >> |
Campas, O., Rojas, E., Dumais, J., & Mahadevan, L. (2012). Strategies For Cell Shape Control In Tip-Growing Cells. Am. J. Bot., 99(9), 1577–1582.
Abstract: Premise of the study: Despite the large diversity in biological cell morphology, the processes that specify and control cell shape are not yet fully understood. Here we study the shape of tip-growing, walled cells, which have evolved a polar mode of cell morphogenesis leading to characteristic filamentous cell morphologies that extend only apically. Methods: We identified the relevant parameters for the control of cell shape and derived scaling laws based on mass conservation and force balance that connect these parameters to the resulting geometrical phenotypes. These laws provide quantitative testable relations linking morphological phenotypes to the biophysical processes involved in establishing and modulating cell shape in tip-growing, walled cells. Key results and conclusions: By comparing our theoretical results to the observed morphological variation within and across species, we found that tip-growing cells from plant and fungal species share a common strategy to shape the cell, whereas oomycete species have evolved a different mechanism.
Keywords: cell wall; morphogenesis; morphological variation; tip-growth; walled cells
|
Donoso, R., Leiva-Novoa, P., Zuniga, A., Timmermann, T., Recabarren-Gajardo, G., & Gonzalez, B. (2017). Biochemical and Genetic Bases of Indole-3-Acetic Acid (Auxin Phytohormone) Degradation by the Plant-Growth-Promoting Rhizobacterium Paraburkholderia phytofirmans PsJN. Appl. Environ. Microbiol., 83(1), 20 pp.
Abstract: Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans. These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.
|
Donoso, R. A., Ruiz, D., Garate-Castro, C., Villegas, P., Gonzalez-Pastor, J. E., de Lorenzo, V., et al. (2021). Identification of a self-sufficient cytochrome P450 monooxygenase from Cupriavidus pinatubonensis JMP134 involved in 2-hydroxyphenylacetic acid catabolism, via homogentisate pathway. Microb. Biotechnol., 14(5), 1944–1960.
Abstract: The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a beta-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays. The ohpA gene belongs to an operon including also ohpT, coding for a substrate-binding subunit of a putative transporter, whose expression is driven by an inducible promoter responsive to 2-HPA in presence of a predicted OhpR transcriptional regulator. OhpA homologues can be found in several genera belonging to Actinobacteria and alpha-, beta- and gamma-proteobacteria lineages indicating a widespread distribution of 2-HPA catabolism via homogentisate route. These results provide first time evidence for the natural function of members of the CYP116B self-sufficient oxygenases and represent a significant input to support novel kinetic and structural studies to develop cytochrome P450-based biocatalytic processes.
Keywords: COMPLETE GENOME SEQUENCE; ELECTRON-TRANSFER; GENE; DEGRADATION; SYSTEM; STRAIN; P450BM3; GROWTH; DOMAIN; HYDROXYLATION
|
Dumais, J. (2013). Modes of deformation of walled cells. J. Exp. Bot., 64(15), 4681–4695.
Abstract: The bewildering morphological diversity found in cells is one of the starkest illustrations of lifes ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modesuinextensional and equi-area deformationsuare embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.
|
Dumais, J. (2021). Mechanics and hydraulics of pollen tube growth. New Phytol., 232(4), 1549–1565.
Abstract: All kingdoms of life have evolved tip-growing cells able to mine their environment or deliver cargo to remote targets. The basic cellular processes supporting these functions are understood in increasing detail, but the multiple interactions between them lead to complex responses that require quantitative models to be disentangled. Here, I review the equations that capture the fundamental interactions between wall mechanics and cell hydraulics starting with a detailed presentation of James Lockhart's seminal model. The homeostatic feedbacks needed to maintain a steady tip velocity are then shown to offer a credible explanation for the pulsatile growth observed in some tip-growing cells. Turgor pressure emerges as a central variable whose role in the morphogenetic process has been a source of controversy for more than 50 yr. I argue that recasting Lockhart's work as a process of chemical stress relaxation can clarify how cells control tip growth and help us internalise the important but passive role played by turgor pressure in the morphogenetic process.
|
Efraimidis, I., Gaona, J., Hernandez, R., & Venegas, O. (2017). On harmonic Bloch-type mappings. Complex Var. Elliptic Equ., 62(8), 1081–1092.
Abstract: Let f be a complex-valued harmonicmapping defined in the unit disk D. We introduce the following notion: we say that f is a Bloch-type function if its Jacobian satisfies This gives rise to a new class of functions which generalizes and contains the well-known analytic Bloch space. We give estimates for the schlicht radius, the growth and the coefficients of functions in this class. We establish an analogue of the theorem which, roughly speaking, states that for. analytic log. is Bloch if and only if. is univalent.
|
Gazitua, M. C., Morgante, V., Poupin, M. J., Ledger, T., Rodriguez-Valdecantos, G., Herrera, C., et al. (2021). The microbial community from the early-plant colonizer (Baccharis linearis) is required for plant establishment on copper mine tailings. Sci. Rep., 11(1), 10448.
Abstract: Plants must deal with harsh environmental conditions when colonizing abandoned copper mine tailings. We hypothesized that the presence of a native microbial community can improve the colonization of the pioneer plant, Baccharis linearis, in soils from copper mining tailings. Plant growth and microbial community compositions and dynamics were determined in cultivation pots containing material from two abandoned copper mining tailings (Huana and Tambillos) and compared with pots containing fresh tailings or surrounding agricultural soil. Controls without plants or using irradiated microbe-free substrates, were also performed. Results indicated that bacteria (Actinobacteria, Gammaproteobacteria, and Firmicutes groups) and fungi (Glomus genus) are associated with B. linearis and may support plant acclimation, since growth parameters decreased in both irradiated (transiently without microbial community) and fresh tailing substrates (with a significantly different microbial community). Consistently, the composition of the bacterial community from abandoned copper mining tailings was more impacted by plant establishment than by differences in the physicochemical properties of the substrates. Bacteria located at B. linearis rhizoplane were clearly the most distinct bacterial community compared with those of fresh tailings, surrounding soil and non-rhizosphere abandoned tailings substrates. Beta diversity analyses showed that the rhizoplane bacterial community changed mainly through species replacement (turnover) than species loss (nestedness). In contrast, location/geographical conditions were more relevant than interaction with the plants, to explain fungal community differences.
Keywords: BACTERIAL COMMUNITIES; HEAVY-METALS; PHYTOSTABILIZATION; REVEGETATION; RHIZOSPHERE; REMEDIATION; IMPACT; GROWTH; NORTH
|
Lagos, N. A., Benitez, S., Duarte, C., Lardies, M. A., Broitman, B. R., Tapia, C., et al. (2016). Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact., 8, 357–370.
Abstract: Coastal upwelling regions already constitute hot spots of ocean acidification as naturally acidified waters are brought to the surface. This effect could be exacerbated by ocean acidification and warming, both caused by rising concentrations of atmospheric CO2. Along the Chilean coast, upwelling supports highly productive fisheries and aquaculture activities. However, during recent years, there has been a documented decline in the national production of the native scallop Argopecten purpuratus. We assessed the combined effects of temperature and pCO(2)-driven ocean acidification on the growth rates and shell characteristics of this species farmed under the natural influence of upwelling waters occurring in northern Chile (30 degrees S, Tongoy Bay). The experimental scenario representing current conditions (14 degrees C, pH similar to 8.0) were typical of natural values recorded in Tongoy Bay, whilst conditions representing the low pH scenario were typical of an adjacent upwelling area (pH similar to 7.6). Shell thickness, weight, and biomass were reduced under low pH (pH similar to 7.7) and increased temperature (18 degrees C) conditions. At ambient temperature (14 degrees C) and low pH, scallops showed increased shell dissolution and low growth rates. However, elevated temperatures ameliorated the impacts of low pH, as evidenced by growth rates in both pH treatments at the higher temperature treatment that were not significantly different from the control treatment. The impact of low pH at current temperature on scallop growth suggests that the upwelling could increase the time required for scallops to reach marketable size. Mortality of farmed scallops is discussed in relation to our observations of multiple environmental stressors in this upwelling-influenced area.
Keywords: Calcification; Shell growth; Scallop farming; Upwelling; Chile
|
Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., et al. (2016). Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front. Microbiol., 7, 18 pp.
Abstract: Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homosenne-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
|
Ledger, T., Zuniga, A., Kraiser, T., Dasencich, P., Donoso, R., Perez-Pantoja, D., et al. (2012). Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie Van Leeuwenhoek, 101(4), 713–723.
Abstract: Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the beta-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.
|
Lopatin, J., Araya-Lopez, R., Galleguillos, M., & Perez-Quezada, J. F. (2022). Disturbance alters relationships between soil carbon pools and aboveground vegetation attributes in an anthropogenic peatland in Patagonia. Ecol. Evol., 12(3), e8694.
Abstract: Anthropogenic-based disturbances may alter peatland soil-plant causal associations and their ability to sequester carbon. Likewise, it is unclear how the vegetation attributes are linked with different soil C decomposition-based pools (i.e., live moss, debris, and poorly- to highly-decomposed peat) under grassing and harvesting conditions. Therefore, we aimed to assess the relationships between aboveground vegetation attributes and belowground C pools in a Northern Patagonian peatland of Sphagnum magellanicum with disturbed and undisturbed areas. We used ordination to depict the main C pool and floristic gradients and structural equation modeling (SEM) to explore the direct and indirect relationships among these variables. In addition, we evaluated whether attributes derived from plant functional types (PFTs) are better suited to predict soil C pools than attributes derived from species gradients. We found that the floristic composition of the peatland can be classified into three categories that follow the C pool gradient. These categories correspond to (1) woody species, such as Baccharis patagonica, (2) water-logged species like Juncus procerus, and (3) grasslands. We depicted that these classes are reliable indicators of soil C decomposition stages. However, the relationships change between management. We found a clear statistical trend showing a decrease of live moss, debris, and poorly-decomposed C pools in the disturbed area. We also depicted that plant diversity, plant height, and PFT composition were reliable indicators of C decomposition only under undisturbed conditions, while the species-based attributes consistently yielded better overall results predicting soil C pools than PFT-based attributes. Our results imply that managed peatlands of Northern Patagonia with active grassing and harvesting activities, even if small-scaled, will significantly alter their future C sequestration capacities by decreasing their live and poorly-decomposed components. Finally, aboveground vegetation attributes cannot be used as proxies of soil C decomposition in disturbed peatlands as they no longer relate to decomposition stages.
|
Marin, O., Gonzalez, B., & Poupin, M. J. (2021). From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. Front. Plant Sci., 12, 650609.
Abstract: Synthetic microbial communities (SynComs) are a useful tool for a more realistic understanding of the outcomes of multiple biotic interactions where microbes, plants, and the environment are players in time and space of a multidimensional and complex system. Toward a more in-depth overview of the knowledge that has been achieved using SynComs in the rhizosphere, a systematic review of the literature on SynComs was performed to identify the overall rationale, design criteria, experimental procedures, and outcomes of in vitro or in planta tests using this strategy. After an extensive bibliography search and a specific selection process, a total of 30 articles were chosen for further analysis, grouping them by their reported SynCom size. The reported SynComs were constituted with a highly variable number of members, ranging from 3 to 190 strains, with a total of 1,393 bacterial isolates, where the three most represented phyla were Proteobacteria, Actinobacteria, and Firmicutes. Only four articles did not reference experiments with SynCom on plants, as they considered only microbial in vitro studies, whereas the others chose different plant models and plant-growth systems; some of them are described and reviewed in this article. Besides, a discussion on different approaches (bottom-up and top-down) to study the microbiome role in the rhizosphere is provided, highlighting how SynComs are an effective system to connect and fill some knowledge gaps and to have a better understanding of the mechanisms governing these multiple interactions. Although the SynCom approach is already helpful and has a promising future, more systematic and standardized studies are needed to harness its full potential.
|
Mora-Ruiz, M. D., Alejandre-Colomo, C., Ledger, T., Gonzalez, B., Orfila, A., & Rossello-Mora, R. (2018). Non-halophilic endophytes associated with the euhalophyte Arthrocnemum macrostachyum and their plant growth promoting activity potential. FEMS Microbiol. Lett., 365(19), 11 pp.
Abstract: Numerous microbial taxa establish natural relations with plants, and especially endophytes can be relevant in the development and growth promotion of their host. In this work, we explore the diversity of non-halophilic microorganisms inhabiting the endosphere of the halophyte Arthrocnemum macrostachyum. A total of 1045 isolates were recovered using standard non-saline media, which clustered into 22 operational phylogenetic units (OPUs) including 7 putative new species and 13 OPUs not previously detected as endophytes. The more abundant isolates corresponded to close relatives of Kushneria indalinina/K. marisflavi, Providencia rettgeri, Pseudomonas zhaodongensis and Bacillus safensis, which made up to similar to 62% of the total isolates. We also isolated OPUs not detected by the culture-independent approach reinforcing the need of culturing to reveal the microbial diversity associated with plants. Additionally, the plant growth promoting activity was evaluated by representative strains of the more abundant OPUs (total = 94 strains) including also some previously isolated halophiles from the same plants. Under both saline and non-saline conditions, some strains principally those affiliated to Paenibacillus borealis, Staphylococcus equorum, Salinicola halophilus and Marinococcus tarijensis, presented growth promoting activity in Arabidopsis thaliana, which was evaluated as an increment of weight and root length.
|
Navarro, J. M., Duarte, C., Manriquez, P. H., Lardies, M. A., Torres, R., Acuna, K., et al. (2016). Ocean warming and elevated carbon dioxide: multiple stressor impacts on juvenile mussels from southern Chile. ICES J. Mar. Sci., 73(3), 764–771.
Abstract: The combined effect of increased ocean warming and elevated carbon dioxide in seawater is expected to have significant physiological and ecological consequences at many organizational levels of the marine ecosystem. In the present study, juvenile mussels Mytilus chilensis were reared for 80 din a factorial combination of two temperatures (12 and 16 degrees C) and three pCO(2) levels (380, 700, and 1000 μatm). We investigated the combined effects of increasing seawater temperature and pCO(2) on the physiological performance (i.e. feeding, metabolism, and growth). Lower clearance rate (CR) occurred at the highest pCO(2) concentration (1000 μatm) compared with the control (380 μatm) and with the intermediate concentration of pCO(2) (700 μatm). Conversely, CR was significantly higher at 16 degrees C than at 12 degrees C. Significant lower values of oxygen uptake were observed in mussels exposed to 1000 μatm pCO(2) level compared with those exposed to 380 μatm pCO(2). Scope for growth (SFG) was significantly lower at the highest pCO(2) concentration compared with the control. Mussels exposed to 700 μatm pCO(2) did not show significantly different SFG from the other two pCO(2) treatments. SFG was significantly higher at 16 degrees C than at 12 degrees C. This might be explained because the experimental mussels were exposed to temperatures experienced in their natural environment, which are within the range of thermal tolerance of the species. Our results suggest that the temperature rise within the natural range experienced by M. chilensis generates a positive effect on the processes related with energy gain (i.e. feeding and absorption) to be allocated to growth. In turn, the increase in the pCO(2) level of 1000 μatm, independent of temperature, adversely affects this species, with significantly reduced energy allocated to growth (SFG) compared with the control treatment.
Keywords: high CO2; multiple stressors; mussels; ocean warming; scope for growth; thermal window
|
Orellana, D., Machuca, D., Ibeas, M. A., Estevez, J. M., & Poupin, M. J. (2022). Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants. Front. Microbiol., 13, 1083270.
Abstract: Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria.
|
Perez-Quezada, J. F., Perez, C. A., Brito, C. E., Fuentes, J. P., Gaxiola, A., Aguilera-Riquelme, D., et al. (2021). Biotic and abiotic drivers of carbon, nitrogen and phosphorus stocks in a temperate rainforest. Forest. Ecol. Manag., 494, 119341.
Abstract: Forest ecosystems are recognized for their large capacity to store carbon (C) in their aboveground and belowground biomass and soil pools. While the distribution of C among ecosystem pools has been extensively studied, less is known about nitrogen (N) and phosphorus (P) pools and how these stocks relate to each other. There is also a need to understand how biotic and abiotic ecosystem properties drive the magnitude and distribution of CN-P stocks. We studied a temperate rainforest in southern South America to answer the following questions: 1) how are C-N-P total stocks distributed among the different ecosystem pools?, 2) how do C:N, C:P and N:P ratios vary among ecosystem pools?, and 3) which are the main biotic and abiotic drivers of C-N-P stocks? We established 33 circular plots to estimate C, N, and P stocks in different pools (i.e. trees, epiphytes, understory, necromass, leaf litter, and soil) and a set of biotic (e.g., tree density and richness) and abiotic variables (e.g., air temperature, humidity and soil depth). We used structural equation modeling to identify the relative importance of environmental drivers on C-N-P stocks. We found that total ecosystem stocks (mean +/- SE) were 1062 +/- 58 Mg C ha-1, 28.8 +/- 1.5 Mg N ha-1, and 347 +/- 12.5 kg P ha-1. The soil was the largest ecosystem pool, containing 68%, 92%, and 73% of the total C, N, and P stocks, respectively. Compared to representative temperate forests, the soil of this forest contains the largest concentrations and stocks of C and N. The low P stock and wide soil C:P and N:P ratios suggest that P may be limiting forest productivity. The ecosystem C-N-P stocks were mainly driven by abiotic properties measured in the study area, however for N stocks, variables such as plant diversity and canopy openness were also relevant. Our results provide evidence about the importance not only of understanding the differences in C, N, and P stocks but also of the factors that drive such differences. This is key to inform conservation policies related to preserving old-growth forests in southern South America, which indeed are facing a rapid land-use change process.
|
Pinedo, I., Ledger, T., Greve, M., & Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front. Plant Sci., 6, 17 pp.
Abstract: Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging Oscorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and longterm stress (Arabidopsis K Transporter 1, High-Affinity K Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.
|
Poupin, M. J., Ledger, T., Rosello-Mora, R., & Gonzalez, B. (2023). The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. Environ. microbiome, 18(1), 9.
Abstract: As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
|
Tapia-Belmonte, F., Concha, A., & Poupin, M. J. (2023). The Effects of Uniform and Nonuniform Magnetic Fields in Plant Growth: A Meta-Analysis Approach. Bioelectromagnetics, Early Access.
Abstract: Magnetic field (MF) effects have been reported in plants' growth, seed germination, gene expression, and water consumption. Accordingly, magnetic treatments have been proposed as a sustainable alternative to improve yields. Nevertheless, a comprehensive quantitative assessment is needed to understand whether their effects are general, species-specific, or dependent on the experimental setting. We conducted a multilevel meta-analysis of 45 articles that studied 29 different plant species. A positive and neutral effect of a nonuniform MF was found on fresh weight and germination rate, respectively. A significant association was found between a uniform MF and germination. These results suggest that MFs improve plant growth. However, the effects are highly dependent on the experimental setting. This opens exciting questions about the biophysical mechanisms underlying the perception and transduction of this environmental cue and about the possible translation to agricultural practices
|
Tariq, A., Undurraga, E. A., Laborde, C. C., Vogt-Geisse, K., Luo, R. Y., Rothenberg, R., et al. (2021). Transmission dynamics and control of COVID-19 in Chile, March-October, 2020. PLOS Negl. Trop. Dis., 15(1), e0009070.
Abstract: ince the detection of the first case of COVID-19 in Chile on March 3(rd), 2020, a total of 513,188 cases, including similar to 14,302 deaths have been reported in Chile as of November 2(nd), 2020. Here, we estimate the reproduction number throughout the epidemic in Chile and study the effectiveness of control interventions especially the effectiveness of lockdowns by conducting short-term forecasts based on the early transmission dynamics of COVID-19. Chile's incidence curve displays early sub-exponential growth dynamics with the deceleration of growth parameter, p, estimated at 0.8 (95% CI: 0.7, 0.8) and the reproduction number, R, estimated at 1.8 (95% CI: 1.6, 1.9). Our findings indicate that the control measures at the start of the epidemic significantly slowed down the spread of the virus. However, the relaxation of restrictions and spread of the virus in low-income neighborhoods in May led to a new surge of infections, followed by the reimposition of lockdowns in Greater Santiago and other municipalities. These measures have decelerated the virus spread with R estimated at similar to 0.96 (95% CI: 0.95, 0.98) as of November 2(nd), 2020. The early sub-exponential growth trend (p similar to 0.8) of the COVID-19 epidemic transformed into a linear growth trend (p similar to 0.5) as of July 7(th), 2020, after the reimposition of lockdowns. While the broad scale social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accrue, underscoring the need for persistent social distancing and active case detection and isolation efforts to maintain the epidemic under control.
Author summary In context of the ongoing COVID-19 pandemic, Chile has been one of the hardest-hit countries in Latin America, struggling to contain the spread of the virus. In this manuscript, we employ renewal equation to estimate the reproduction number (R) for the early ascending phase of the COVID-19 epidemic and by July 7(th), 2020 to guide the magnitude and intensity of interventions required to combat the COVID-19 epidemic. We also estimate the instantaneous reproduction number throughout the epidemic in Chile. Moreover, we generate short-term forecasts based on the epidemic trajectory using phenomenological models, and assess counterfactual scenarios to understand any additional resources required to contain the virus' spread. Our results indicate early sustained transmission of SARS-CoV-2. However, the initial control measures at the start of the epidemic significantly slowed down the spread of the virus. The easing of COVID-19 restrictions in April led to a new wave of infections, followed by the re-imposition of lockdowns in Greater Santiago and several municipalities. Most recent estimates of reproduction number indicate a decline in the virus transmission. While broad-scale social distancing interventions have slowed the virus spread, the number of new COVID-19 cases continue to accrue, underscoring the need for persistent social distancing efforts. Keywords: EPIDEMIC; CHARACTERIZE; GROWTH
|