Aylwin, R., JerezHanckes, C., & Pinto, J. (2020). On the Properties of Quasiperiodic Boundary Integral Operators for the Helmholtz Equation. Integr. Equ. Oper. Theory, 92(2), 41 pp.
Abstract: We study the mapping properties of boundary integral operators arising when solving twodimensional, timeharmonic waves scattered by periodic domains. For domains assumed to be at least Lipschitz regular, we propose a novel explicit representation of Sobolev spaces for quasiperiodic functions that allows for an analysis analogous to that of Helmholtz scattering by bounded objects. Except for RayleighWood frequencies, continuity and coercivity results are derived to prove wellposedness of the associated first kind boundary integral equations.
