Brems, A., Caceres, G., Dewil, R., Baeyens, J., & Pitie, E. (2013). Heat transfer to the riser-wall of a circulating fluidised bed (CFB). Energy, 50, 493–500.
Abstract: The circulating fluidized bed is of increasing importance for gas-solid and gas-catalytic reactions, for drying, and recently its use in solar energy capture and storage has been advocated. In all applications, the supply or withdrawal of heat is a major issue, and the heat transfer coefficient from the gas-solid suspension to the heat transfer surface needs to be determined as design parameter. The present paper investigates the heat transfer coefficient for different operating gas velocity and solids circulation flux, whilst covering the different hydrodynamic solid flow regimes of dilute, core-annulus or dense mode. Measured values of the wall-to-bed heat transfer coefficients are compared with empirical predictions of both Molodstof and Muzyka, and Golriz and Grace. The application of a packet renewal mechanism at the wall is also investigated, and introducing the predicted solid contact time at the wall provides a very fair estimate of the heat transfer coefficient. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
|
Caceres, G., Fullenkamp, K., Montane, M., Naplocha, K., & Dmitruk, A. (2017). Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants. Energies, 10(9), 21 pp.
Abstract: In the present paper, the finite element method is used to perform an exhaustive analysis of the thermal behavior of encapsulated phase change materials (EPCMs), which includes an assessment of several materials in order to identify the best combination of PCM and shell material in terms of thermal energy storage, heat transfer rate, cost of materials, limit of pressure that they can support and other criteria. It is possible to enhance the heat transfer rate without a considerable decrease of the thermal energy storage density, by increasing the thickness of the shell. In the first examination of thermomechanical coupling effects, the technical feasibility can be determined if the EPCM dimensions are designed considering the thermal expansion and the tensile strength limit of the materials. Moreover, when a proper EPCM shell material and PCM composition is used, and compared with the current storage methods of concentrated solar power (CSP) plants, the use of EPCM allows one to enhance significantly the thermal storage, reaching more than 1.25 GJ/m(3) of energy density.
|
Fernandes, D., Pitie, F., Caceres, G., & Baeyens, J. (2012). Thermal energy storage: “How previous findings determine current research priorities”. Energy, 39(1), 246–257.
Abstract: Thermal energy storage is an expanding field within the subject of renewable energy technologies. After a listing of the different possibilities available for energy storage, this paper provides a comparison of various materials for High Temperature Thermal Energy Storage (HTTS). Several attributes and needs of each solution are listed. One in particular is using the latent heat as one of the most efficient ways to store thermal energy. The mixture of phase change material (PCM) embedded in a metal foam is optimising the thermal properties of the material for latent heat energy storage. The results of previous studies show that mechanical and thermal properties of foam were extensively studied separately. This paper highlights the potential for an advanced study of thermo-mechanical properties of metal foams embedded with PCM. (c) 2012 Elsevier Ltd. All rights reserved.
|