|
Gonzalez, M. E., Galleguillos, M., Lopatin, J., Leal, C., Becerra-Rodas, C., Lara, A., et al. (2022). Surviving in a hostile landscape: Nothofagus alessandrii remnant forests threatened by mega-fires and exotic pine invasion in the coastal range of central Chile. Oryx, Early Access.
Abstract: Nothofagus alessandrii, categorized as Endangered on the IUCN Red List, is an endemic, deciduous tree species of the coastal range of central Chile. We assessed the effects of fire severity, invasion by the exotic fire-prone Pinus radiata, and land-cover composition and configuration of the landscape on the resilience of fragments of N. alessandrii after a mega-fire in 2017. We used remote sensing data to estimate land-use classes and cover, fire severity and invasion cover of P. radiata. We monitored forest composition and structure and post-fire responses of N. alessandrii forests in situ for 2 years after the mega-fire. In the coastal Maule region wildfires have been favoured by intense drought and widespread exotic pine plantations, increasing the ability of fire-adapted invasive species to colonize native forest remnants. Over 85% of N. alessandrii forests were moderately or severely burnt. The propagation and severity of fire was probably amplified by the exotic pines located along the edges of, or inside, the N. alessandrii fragments and the highly flammable pine plantations surrounding these fragments (> 60% of land use is pine plantations). Pinus radiata, a fire-adapted pioneer species, showed strong post-fire recruitment within the N. alessandrii fragments, especially those severely burnt. Positive feedback between climate change (i.e. droughts and heat waves), wildfires and pine invasions is driving N. alessandrii forests into an undesirable and probably irreversible state (i.e. a landscape trap). A large-scale restoration programme to design a diverse and less flammable landscape is needed to avoid the loss of these highly threatened forest ecosystems.
|
|
|
Heitzmann, A., Zhou, G., Quinn, S. N., Huang, C. X., Dong, J. Y., Bouma, L. G., et al. (2023). TOI-4562b: A Highly Eccentric Temperate Jupiter Analog Orbiting a Young Field Star. Astron. J., 165(3), 121.
Abstract: We report the discovery of TOI-4562b (TIC-349576261), a Jovian planet orbiting a young F7V-type star, younger than the Praesepe/Hyades clusters (< 700 Myr). This planet stands out because of its unusually long orbital period for transiting planets with known masses (Porb = 225.11781(- 0.00022) (+0.00025 )days) and because it has a substantial eccentricity (e = 0.76(- 0.02) (+0.02)). The location of TOI-4562 near the southern continuous viewing zone of TESS allowed observations throughout 25 sectors, enabling an unambiguous period measurement from TESS alone. Alongside the four available TESS transits, we performed follow-up photometry using the South African Astronomical Observatory node of the Las Cumbres Observatory and spectroscopy with the CHIRON spectrograph on the 1.5 m SMARTS telescope. We measure a radius of 1.118 (+0.013) (-0.014) R(J )and a mass of 2.30(-0.47)(+0.48)M(J) for TOI-4562b. The radius of the planet is consistent with contraction models describing the early evolution of the size of giant planets. We detect tentative transit timing variations at the similar to 20 minutes level from five transit events, favoring the presence of a companion that could explain the dynamical history of this system if confirmed by future follow-up observations. With its current orbital configuration, tidal timescales are too long for TOI-4562b to become a hot Jupiter via high eccentricity migration though it is not excluded that interactions with the possible companion could modify TOI4562b's eccentricity and trigger circularization. The characterization of more such young systems is essential to set constraints on models describing giant-planet evolution.
|
|
|
Hobson, M. J., Jordan, A., Bryant, E. M., Brahm, R., Bayliss, D., Hartman, J. D., et al. (2023). TOI-3235 b: A Transiting Giant Planet around an M4 Dwarf Star. Astrophys. J. Lett., 946(1), L4.
Abstract: We present the discovery of TOI-3235 b, a short-period Jupiter orbiting an M dwarf with a stellar mass close to the critical mass at which stars transition from partially to fully convective. TOI-3235 b was first identified as a candidate from TESS photometry and confirmed with radial velocities from ESPRESSO and ground-based photometry from HATSouth, MEarth-South, TRAPPIST-South, LCOGT, and ExTrA. We find that the planet has a mass of 0.665 +/- 0.025 M-J and a radius of 1.017 +/- 0.044 R-J. It orbits close to its host star, with an orbital period of 2.5926 days but has an equilibrium temperature of approximate to 604 K, well below the expected threshold for radius inflation of hot Jupiters. The host star has a mass of 0.3939 +/- 0.0030 M-circle dot, a radius of 0.3697 +/- 0.0018 R-circle dot;, an effective temperature of 3389 K, and a J-band magnitude of 11.706 +/- 0.025. Current planet formation models do not predict the existence of gas giants such as TOI-3235 b around such low-mass stars. With a high transmission spectroscopy metric, TOI-3235 b is one of the best-suited giants orbiting M dwarfs for atmospheric characterization.
|
|
|
McGruder, C. D., Lopez-Morales, M., Kirk, J., Espinoza, N., Rackham, B. V., Alam, M. K., et al. (2022). ACCESS: Confirmation of a Clear Atmosphere for WASP-96b and a Comparison of Light Curve Detrending Techniques. Astron. J., 164(4), 134.
Abstract: One of the strongest Na I features was observed in WASP-96b. To confirm this novel detection, we provide a new 475-825 nm transmission spectrum obtained with Magellan/IMACS, which indeed confirms the presence of a broad sodium absorption feature. We find the same result when reanalyzing the 400-825 nm VLT/FORS2 data. We also utilize synthetic data to test the effectiveness of two common detrending techniques: (1) a Gaussian processes (GP) routine, and (2) common-mode correction followed by polynomial correction (CMC+Poly). We find that both methods poorly reproduce the absolute transit depths but maintain their true spectral shape. This emphasizes the importance of fitting for offsets when combining spectra from different sources or epochs. Additionally, we find that, for our data sets, both methods give consistent results, but CMC+Poly is more accurate and precise. We combine the Magellan/IMACS and VLT/FORS2 spectra with literature 800-1644 nm HST/ WFC3 spectra, yielding a global spectrum from 400 to 1644 nm. We used the PLATON and Exoretrievals retrieval codes to interpret this spectrum, and find that both yield relatively deeper pressures where the atmosphere is optically thick at log-pressures between 1.3(-1.1)(+1.0) and 0.29(-)(2.02)(+1.86) bars, respectively. Exoretrievals finds solar to supersolar Na I and H2O log-mixing ratios of -5.4(-1.9)(+2.0) and -4.5(-2.0)(+2.0), respectively, while PLATON finds an overall metallicity of log(10) (Z/Z(circle dot)) = -0.49(-0.37)(+1.0) dex. Therefore, our findings are in agreement with the literature and support the inference that the terminator of WASP-96b has few aerosols obscuring prominent features in the optical to near-infrared (near-IR) spectrum.
|
|
|
Mulders, G. D., Pascucci, I., Ciesla, F. J., & Fernandes, R. B. (2021). The Mass Budgets and Spatial Scales of Exoplanet Systems and Protoplanetary Disks. Astrophys. J., 920(2), 66.
Abstract: Planets are born from disks of gas and dust, and observations of protoplanetary disks are used to constrain the initial conditions of planet formation. However, dust mass measurements of Class II disks with ALMA have called into question whether they contain enough solids to build the exoplanets that have been detected to date. In this paper, we calculate the mass and spatial scale of solid material around Sun-like stars probed by transit and radial velocity exoplanet surveys and compare those to the observed dust masses and sizes of Class II disks in the same stellar-mass regime. We show that the apparent mass discrepancy disappears when accounting for observational selection and detection biases. We find a discrepancy only when the planet formation efficiency is below 100%, or if there is a population of undetected exoplanets that significantly contributes to the mass in solids. We identify a positive correlation between the masses of planetary systems and their respective orbital periods, which is consistent with the trend between the masses and the outer radii of Class II dust disks. This implies that, despite a factor 100 difference in spatial scale, the properties of protoplanetary disks seem to be imprinted on the exoplanet population.
|
|
|
Rica, S. (2009). Analytical And Numerical Elements Of A Supersolid Model. Int. J. Bifurcation Chaos, 19(8), 2783–2800.
Abstract: In this article, the main properties of a model of supersolid in the frame of a Gross-Pitaevskii equation is reviewed. It was developed mainly by the author with Pomeau, Josserand and Sepulveda. Emphasis is placed on the numerical details and tools that are absent in our previous publications and maybe useful for authors who are eventually interested in the model. The model exhibits superfluid properties like nonclassical moment of inertia at T = 0K, quantized vortices and persistent currents without the presence of defects, moreover, only a transient flow is allowed by defects, akin to plastic flow in ordinary solids.
|
|
|
Shanmugaraj, K., Vinoth, V., Pugazhenthiran, N., Valdes, H., Salvo, C., Sepulveda, E., et al. (2023). Ferrihydrite- Graphene oxide foams as an efficient adsorbent for Arsenic (III) removal from an aqueous solution. Inorg. Chem. Commun., 153, 110892.
Abstract: We report the synthesis of a new range of ferrihydrite-graphene oxide (FH-GO) foams using chitosan as cross linker, with varying iron content (5 wt%, 10 wt%, and 20 wt% of FH) as highly efficient adsorbents for the removal of arsenic (III) (As(III)) in an aqueous solution. The sonochemical methods were adopted to synthesize various FH-GO foams and were further characterized by XRD, SEM, TEM, FTIR, Raman, and XPS techniques. The synthesized materials were used for the removal of As(III) in both batch and fixed bed absorbent column methods. The adsorption isotherm results showed that the 10 wt% of FH-GO foams demonstrated a superior adsorbent for the As(III) with high adsorption capacities than that of the other two FH-GO foams (5 wt% and 20 wt% of FH). Moreover, 10 wt% of FH-GO foams was also demonstrated to be nearly a complete (>98.4%) removal of As(III) ions at neutral pH 7. The adsorption isotherm fitted very well with the Langmuir model with the highest accuracy data for all the synthesized adsorbent materials. In addition, the fixed bed absorbent column method was also adopted for the removal of As(III) ions in the water sample, which showed > 99.2% of removal efficiency. The outstanding adsorption capabilities, along with their easy and low-cost synthesis, make these kinds of adsorbents extremely capable for commercial applications in wastewater treatment and drinking water purification.
|
|
|
Trifonov, T., Brahm, R., Jordan, A., Hartogh, C., Henning, T., Hobson, M. J., et al. (2023). TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variations Revealed by TESS. Astron. J., 165(4), 179.
Abstract: The K-type star TOI-2525 has an estimated mass of M = 0.849(-0.033)(+0.024) M-circle dot and radius of R = 0.785(-0.007)(+0.007) R-circle dot observed by the TESS mission in 22 sectors (within sectors 1 and 39). The TESS light curves yield significant transit events of two companions, which show strong transit timing variations (TTVs) with a semiamplitude of similar to 6 hr. We performed TTV dynamical and photodynamical light-curve analysis of the TESS data combined with radial velocity measurements from FEROS and PFS, and we confirmed the planetary nature of these companions. The TOI-2525 system consists of a transiting pair of planets comparable to Neptune and Jupiter with estimated dynamical masses of m(b) = 0.088(-0.004)(+0.005) and m(c) = 0.709(-0.033)(+0.034) M-Jup, radii of r(b) = 0.88(-0.02)(+0.02) and r(c) = 0.98(-0.02)(+0.02) R-Jup, and orbital periods of P-b = 23.288(-0.002)(+0.001) and P-c = 49.260(-0.001)(+0.001) days for the inner and outer planet, respectively. The period ratio is close to the 2:1 period commensurability, but the dynamical simulations of the system suggest that it is outside the mean-motion resonance (MMR) dynamical configuration. Object TOI-2525 b is among the lowest-density Neptune-mass planets known to date, with an estimated median density of rho(b) = 0.174(-0.015)(+0.016) g cm(-3). The TOI-2525 system is very similar to the other K dwarf systems discovered by TESS, TOI-2202 and TOI-216, which are composed of almost identical K dwarf primaries and two warm giant planets near the 2:1 MMR.
|
|
|
Trifonov, T., Wollbold, A., Kurster, M., Eberhardt, J., Stock, S., Henning, T., et al. (2022). A New Third Planet and the Dynamical Architecture of the HD33142 HD 33142 Planetary System. Astron. J., 164(4), 156.
Abstract: Based on recently-taken and archival HARPS, FEROS, and HIRES radial velocities (RVs), we present evidence for a new planet orbiting the first ascent red giant star HD 33142 (with an improved mass estimate of M1.52 +/- 0.03 M-circle dot), already known to host two planets. We confirm the Jovian-mass planets HD 33142b and c, with periods of P-b = 330.0(-0.4)(+0.4) days and P-c = 810. 2(-4.2)(+3.8) days and minimum dynamical masses of m(b) sin i =1.26(-0.05)(+0.05) M-Jup and m(c) sin i = 0.89(-0.05)(+0.06) M-Jup, respectively. Furthermore, our periodogram analysis of the precise RVs shows strong evidence for a short-period Doppler signal in the residuals of a two-planet Keplerian fit, which we interpret as a third, Saturn-mass planet with m(d) sin i = 0.20(-)(0.03)(+0.02) M-Jup in a close-in orbit with an orbital period of P-d = 89.9(-0.1)(+0.1) days. We study the dynamical behavior of the three-planet system configuration with an N-body integration scheme, finding it to be long-term stable with the planets alternating between low and moderate eccentricity episodes. We also perform N-body simulations, including stellar evolution and second-order dynamical effects such as planet-stellar tides and stellar mass loss on the way to the white dwarf phase. We find that planets HD 33142b, c, and d are likely to be engulfed near the tip of the red giant branch phase due to tidal migration. These results make the HD 33142 system an essential benchmark for planet population statistics of the multiple-planet systems found around evolved stars.
|
|
|
van der Marel, N., & Mulders, G. D. (2021). A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics. Astron. J., 162(1), 28.
Abstract: Gaps in protoplanetary disks have long been hailed as signposts of planet formation. However, a direct link between exoplanets and disks remains hard to identify. We present a large sample study of ALMA disk surveys of nearby star-forming regions to disentangle this connection. All disks are classified as either structured (transition, ring, extended) or nonstructured (compact) disks. Although low-resolution observations may not identify large-scale substructure, we assume that an extended disk must contain substructure from a dust evolution argument. A comparison across ages reveals that structured disks retain high dust masses up to at least 10 Myr, whereas the dust mass of compact, nonstructured disks decreases over time. This can be understood if the dust mass evolves primarily by radial drift, unless drift is prevented by pressure bumps. We identify a stellar mass dependence of the fraction of structured disks. We propose a scenario linking this dependence with that of giant exoplanet occurrence rates. We show that there are enough exoplanets to account for the observed disk structures if transitional disks are created by exoplanets more massive than Jupiter and ring disks by exoplanets more massive than Neptune, under the assumption that most of those planets eventually migrate inwards. On the other hand, the known anticorrelation between transiting super-Earths and stellar mass implies those planets must form in the disks without observed structure, consistent with formation through pebble accretion in drift-dominated disks. These findings support an evolutionary scenario where the early formation of giant planets determines the disk's dust evolution and its observational appearance.
|
|
|
Zuniga-Barra, H., Ortega-Martinez, E., Toledo-Alarcon, J., Torres-Aravena, A., Jorquera, L., Rivas, M., et al. (2023). Potential Use of Microbially Induced Calcite Precipitation for the Biocementation of Mine Tailings. Minerals, 13(4), 506.
Abstract: Mining activities offer clear economic benefits for mineral-rich countries. However, mining operations can produce several environmental impacts. Many of these are associated with generating and managing mining waste known as tailings, which are typically stored in surface facilities. Windblown dust emissions from tailing deposits can cause severe damage to local ecosystems and adverse health effects for the surrounding population. Microbially induced calcite precipitation (MICP) can be used for the superficial biocementation of tailings, thereby preventing such emissions. This research studied the capacity of MICP for the biocementation of tailings. The effect of applying different doses of biocementation reagents and two different methods for their application were evaluated. Results show that a relevant increase in surface strength can be achieved, especially if reagents are mechanically mixed with the tailings to induce a more homogeneous distribution of precipitates. Micrographical and mineralogical analysis by SEM, FTIR and XRD analysis showed the precipitation of calcium in the form of anorthite, calcite or vaterite. Overall results indicate that calcite precipitation can be induced in tailing by microorganisms with urease activity, providing a potential technique for the biocementation of this material.
|
|