|
Gonzalez, M. E., Galleguillos, M., Lopatin, J., Leal, C., Becerra-Rodas, C., Lara, A., et al. (2022). Surviving in a hostile landscape: Nothofagus alessandrii remnant forests threatened by mega-fires and exotic pine invasion in the coastal range of central Chile. Oryx, Early Access.
Abstract: Nothofagus alessandrii, categorized as Endangered on the IUCN Red List, is an endemic, deciduous tree species of the coastal range of central Chile. We assessed the effects of fire severity, invasion by the exotic fire-prone Pinus radiata, and land-cover composition and configuration of the landscape on the resilience of fragments of N. alessandrii after a mega-fire in 2017. We used remote sensing data to estimate land-use classes and cover, fire severity and invasion cover of P. radiata. We monitored forest composition and structure and post-fire responses of N. alessandrii forests in situ for 2 years after the mega-fire. In the coastal Maule region wildfires have been favoured by intense drought and widespread exotic pine plantations, increasing the ability of fire-adapted invasive species to colonize native forest remnants. Over 85% of N. alessandrii forests were moderately or severely burnt. The propagation and severity of fire was probably amplified by the exotic pines located along the edges of, or inside, the N. alessandrii fragments and the highly flammable pine plantations surrounding these fragments (> 60% of land use is pine plantations). Pinus radiata, a fire-adapted pioneer species, showed strong post-fire recruitment within the N. alessandrii fragments, especially those severely burnt. Positive feedback between climate change (i.e. droughts and heat waves), wildfires and pine invasions is driving N. alessandrii forests into an undesirable and probably irreversible state (i.e. a landscape trap). A large-scale restoration programme to design a diverse and less flammable landscape is needed to avoid the loss of these highly threatened forest ecosystems.
|
|
|
McGruder, C. D., Lopez-Morales, M., Kirk, J., Espinoza, N., Rackham, B. V., Alam, M. K., et al. (2022). ACCESS: Confirmation of a Clear Atmosphere for WASP-96b and a Comparison of Light Curve Detrending Techniques. Astron. J., 164(4), 134.
Abstract: One of the strongest Na I features was observed in WASP-96b. To confirm this novel detection, we provide a new 475-825 nm transmission spectrum obtained with Magellan/IMACS, which indeed confirms the presence of a broad sodium absorption feature. We find the same result when reanalyzing the 400-825 nm VLT/FORS2 data. We also utilize synthetic data to test the effectiveness of two common detrending techniques: (1) a Gaussian processes (GP) routine, and (2) common-mode correction followed by polynomial correction (CMC+Poly). We find that both methods poorly reproduce the absolute transit depths but maintain their true spectral shape. This emphasizes the importance of fitting for offsets when combining spectra from different sources or epochs. Additionally, we find that, for our data sets, both methods give consistent results, but CMC+Poly is more accurate and precise. We combine the Magellan/IMACS and VLT/FORS2 spectra with literature 800-1644 nm HST/ WFC3 spectra, yielding a global spectrum from 400 to 1644 nm. We used the PLATON and Exoretrievals retrieval codes to interpret this spectrum, and find that both yield relatively deeper pressures where the atmosphere is optically thick at log-pressures between 1.3(-1.1)(+1.0) and 0.29(-)(2.02)(+1.86) bars, respectively. Exoretrievals finds solar to supersolar Na I and H2O log-mixing ratios of -5.4(-1.9)(+2.0) and -4.5(-2.0)(+2.0), respectively, while PLATON finds an overall metallicity of log(10) (Z/Z(circle dot)) = -0.49(-0.37)(+1.0) dex. Therefore, our findings are in agreement with the literature and support the inference that the terminator of WASP-96b has few aerosols obscuring prominent features in the optical to near-infrared (near-IR) spectrum.
|
|
|
Mulders, G. D., Pascucci, I., Ciesla, F. J., & Fernandes, R. B. (2021). The Mass Budgets and Spatial Scales of Exoplanet Systems and Protoplanetary Disks. Astrophys. J., 920(2), 66.
Abstract: Planets are born from disks of gas and dust, and observations of protoplanetary disks are used to constrain the initial conditions of planet formation. However, dust mass measurements of Class II disks with ALMA have called into question whether they contain enough solids to build the exoplanets that have been detected to date. In this paper, we calculate the mass and spatial scale of solid material around Sun-like stars probed by transit and radial velocity exoplanet surveys and compare those to the observed dust masses and sizes of Class II disks in the same stellar-mass regime. We show that the apparent mass discrepancy disappears when accounting for observational selection and detection biases. We find a discrepancy only when the planet formation efficiency is below 100%, or if there is a population of undetected exoplanets that significantly contributes to the mass in solids. We identify a positive correlation between the masses of planetary systems and their respective orbital periods, which is consistent with the trend between the masses and the outer radii of Class II dust disks. This implies that, despite a factor 100 difference in spatial scale, the properties of protoplanetary disks seem to be imprinted on the exoplanet population.
|
|
|
Rica, S. (2009). Analytical And Numerical Elements Of A Supersolid Model. Int. J. Bifurcation Chaos, 19(8), 2783–2800.
Abstract: In this article, the main properties of a model of supersolid in the frame of a Gross-Pitaevskii equation is reviewed. It was developed mainly by the author with Pomeau, Josserand and Sepulveda. Emphasis is placed on the numerical details and tools that are absent in our previous publications and maybe useful for authors who are eventually interested in the model. The model exhibits superfluid properties like nonclassical moment of inertia at T = 0K, quantized vortices and persistent currents without the presence of defects, moreover, only a transient flow is allowed by defects, akin to plastic flow in ordinary solids.
|
|
|
Trifonov, T., Wollbold, A., Kurster, M., Eberhardt, J., Stock, S., Henning, T., et al. (2022). A New Third Planet and the Dynamical Architecture of the HD33142 HD 33142 Planetary System. Astron. J., 164(4), 156.
Abstract: Based on recently-taken and archival HARPS, FEROS, and HIRES radial velocities (RVs), we present evidence for a new planet orbiting the first ascent red giant star HD 33142 (with an improved mass estimate of M1.52 +/- 0.03 M-circle dot), already known to host two planets. We confirm the Jovian-mass planets HD 33142b and c, with periods of P-b = 330.0(-0.4)(+0.4) days and P-c = 810. 2(-4.2)(+3.8) days and minimum dynamical masses of m(b) sin i =1.26(-0.05)(+0.05) M-Jup and m(c) sin i = 0.89(-0.05)(+0.06) M-Jup, respectively. Furthermore, our periodogram analysis of the precise RVs shows strong evidence for a short-period Doppler signal in the residuals of a two-planet Keplerian fit, which we interpret as a third, Saturn-mass planet with m(d) sin i = 0.20(-)(0.03)(+0.02) M-Jup in a close-in orbit with an orbital period of P-d = 89.9(-0.1)(+0.1) days. We study the dynamical behavior of the three-planet system configuration with an N-body integration scheme, finding it to be long-term stable with the planets alternating between low and moderate eccentricity episodes. We also perform N-body simulations, including stellar evolution and second-order dynamical effects such as planet-stellar tides and stellar mass loss on the way to the white dwarf phase. We find that planets HD 33142b, c, and d are likely to be engulfed near the tip of the red giant branch phase due to tidal migration. These results make the HD 33142 system an essential benchmark for planet population statistics of the multiple-planet systems found around evolved stars.
|
|
|
van der Marel, N., & Mulders, G. D. (2021). A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics. Astron. J., 162(1), 28.
Abstract: Gaps in protoplanetary disks have long been hailed as signposts of planet formation. However, a direct link between exoplanets and disks remains hard to identify. We present a large sample study of ALMA disk surveys of nearby star-forming regions to disentangle this connection. All disks are classified as either structured (transition, ring, extended) or nonstructured (compact) disks. Although low-resolution observations may not identify large-scale substructure, we assume that an extended disk must contain substructure from a dust evolution argument. A comparison across ages reveals that structured disks retain high dust masses up to at least 10 Myr, whereas the dust mass of compact, nonstructured disks decreases over time. This can be understood if the dust mass evolves primarily by radial drift, unless drift is prevented by pressure bumps. We identify a stellar mass dependence of the fraction of structured disks. We propose a scenario linking this dependence with that of giant exoplanet occurrence rates. We show that there are enough exoplanets to account for the observed disk structures if transitional disks are created by exoplanets more massive than Jupiter and ring disks by exoplanets more massive than Neptune, under the assumption that most of those planets eventually migrate inwards. On the other hand, the known anticorrelation between transiting super-Earths and stellar mass implies those planets must form in the disks without observed structure, consistent with formation through pebble accretion in drift-dominated disks. These findings support an evolutionary scenario where the early formation of giant planets determines the disk's dust evolution and its observational appearance.
|
|