Home | << 1 >> |
Dong, J. Y., Huang, C. X., Dawson, R. I., Foreman-Mackey, D., Collins, K. A., Quinn, S. N., et al. (2021). Warm Jupiters in TESS Full-frame Images: A Catalog and Observed Eccentricity Distribution for Year 1. Astrophys. J. Suppl. Ser., 255(1), 6.
Abstract: Warm Jupiters-defined here as planets larger than 6 Earth radii with orbital periods of 8-200 days-are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in situ, undergo disk or high-eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters' properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the Transiting Exoplanet Survey Satellite (TESS) survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the full-frame images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS objects of interest by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations, and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
|
Espinoza-Retamal, J. I., Brahm, R., Petrovich, C., Jordán, A., Stefánsson, G., Sedaghati, E., et al. (2023). The Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b. Astrophys. J. Lett., 958(2), L20.
Abstract: High-eccentricity tidal migration predicts the existence of highly eccentric proto hot Jupiters on the “tidal circularization track,” meaning that they might eventually become hot Jupiters, but that their migratory journey remains incomplete. Having experienced moderate amounts of tidal evolution of their orbital elements, proto hot Jupiter systems can be powerful test beds for the underlying mechanisms of eccentricity growth. Notably, they may be used for discriminating between variants of high-eccentricity migration, each predicting a distinct evolution of misalignment between the star and the planet's orbit. We constrain the spin-orbit misalignment of the proto hot Jupiter TOI-3362b with high-precision radial-velocity observations using ESPRESSO at Very Large Telescope. The observations reveal a sky-projected obliquity lambda=1.2+2.8(degrees)/-2.7 and constrain the orbital eccentricity to e = 0.720 +/- 0.016, making it one of the most eccentric gas giants for which the obliquity has been measured. Although the large eccentricity and the striking orbit alignment of the planet are puzzling, we suggest that ongoing coplanar high-eccentricity migration driven by a distant companion is a possible explanation for the system's architecture. This distant companion would need to reside beyond 5 au at 95% confidence to be compatible with the available radial-velocity observations.
Keywords: IN-SITU FORMATION; PLANET; TRANSIT; EVOLUTION; BINARY; PHOTOMETRY; SCATTERING; TELESCOPE; MIGRATION; COMPANION
|
Sedaghati, E., Jordan, A., Brahm, R., Munoz, D. J., Petrovich, C., & Hobson, M. J. (2023). Orbital Alignment of the Eccentric Warm Jupiter TOI-677 b. Astron. J., 166(3), 130.
Abstract: Warm Jupiters lay out an excellent laboratory for testing models of planet formation and migration. Their separation from the host star makes tidal reprocessing of their orbits ineffective, which preserves the orbital architectures that result from the planet-forming process. Among the measurable properties, the orbital inclination with respect to the stellar rotational axis, stands out as a crucial diagnostic for understanding the migration mechanisms behind the origin of close-in planets. Observational limitations have made the procurement of spin-orbit measurements heavily biased toward hot Jupiter systems. In recent years, however, high-precision spectroscopy has begun to provide obliquity measurements for planets well into the warm Jupiter regime. In this study, we present Rossiter-McLaughlin (RM) measurements of the projected obliquity angle for the warm Jupiter TOI-677 b using ESPRESSO at the VLT. TOI-677 b exhibits an extreme degree of alignment (lambda = 0.3 +/- 1.3 deg), which is particularly puzzling given its significant eccentricity (e approximate to 0.45). TOI-677 b thus joins a growing class of close-in giants that exhibit large eccentricities and low spin-orbit angles, which is a configuration not predicted by existing models. We also present the detection of a candidate outer brown dwarf companion on an eccentric, wide orbit (e approximate to 0.4 and P approximate to 13 yr). Using simple estimates, we show that this companion is unlikely to be the cause of the unusual orbit of TOI-677 b. Therefore, it is essential that future efforts prioritize the acquisition of RM measurements for warm Jupiters.
Keywords: IN-SITU FORMATION; TIDAL EVOLUTION; HOT JUPITERS; EXTRASOLAR PLANETS; GIANT PLANETS; BINARY; STARS; MIGRATION; SYSTEMS; VELOCITY
|