|
de la Cruz, R., Salinas, H. S., & Meza, C. (2022). Reliability Estimation for Stress-Strength Model Based on Unit-Half-Normal Distribution. Symmetry, 14(4), 837.
Abstract: Many lifetime distribution models have successfully served as population models for risk analysis and reliability mechanisms. We propose a novel estimation procedure of stress-strength reliability in the case of two independent unit-half-normal distributions can fit asymmetrical data with either positive or negative skew, with different shape parameters. We obtain the maximum likelihood estimator of the reliability, its asymptotic distribution, and exact and asymptotic confidence intervals. In addition, confidence intervals of model parameters are constructed by using bootstrap techniques. We study the performance of the estimators based on Monte Carlo simulations, the mean squared error, average bias and length, and coverage probabilities. Finally, we apply the proposed reliability model in data analysis of burr measurements on the iron sheets.
|
|
|
Goles, E., Slapnicar, I., & Lardies, M. A. (2021). Universal Evolutionary Model for Periodical Species. Complexity, 2021, 2976351.
Abstract: Real-world examples of periodical species range from cicadas, whose life cycles are large prime numbers, like 13 or 17, to bamboos, whose periods are large multiples of small primes, like 40 or even 120. The periodicity is caused by interaction of species, be it a predator-prey relationship, symbiosis, commensalism, or competition exclusion principle. We propose a simple mathematical model, which explains and models all those principles, including listed extremal cases. This rather universal, qualitative model is based on the concept of a local fitness function, where a randomly chosen new period is selected if the value of the global fitness function of the species increases. Arithmetically speaking, the different interactions are related to only four principles: given a couple of integer periods either (1) their greatest common divisor is one, (2) one of the periods is prime, (3) both periods are equal, or (4) one period is an integer multiple of the other.
|
|
|
Leiva, V., Tejo, M., Guiraud, P., Schmachtenberg, O., Orio, P., & Marmolejo-Ramos, F. (2015). Modeling neural activity with cumulative damage distributions. Biol. Cybern., 109(4-5), 421–433.
Abstract: Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.
|
|