|
Carrillo, J., Cubillos, E., & Parra, P. F. (2022). Modeling the seismic response of thin concrete walls using the non-linear Beam-Truss Model. J. Build. Eng., 52, 104424.
Abstract: In recent years, the construction of buildings with thin reinforced concrete (RC) walls has increased significantly in Colombia and other Latin American countries, mainly due to their speed of construction and economy. The reinforcing steel of most of these walls is commonly arranged in a single layer, without any effective confinement. In cases where boundary elements are included, adequate confinement is not guaranteed due to their reduced thickness. Software tools allow verifying the behavior of these buildings under representative seismic events. This article studies the behavior of thin RC walls using the Non-linear Beam-Truss Model (NL-BTM). The commercial software Perform-3D, widely used in professional practice, has been selected for this research. The calibration of the modeling parameters is carried out using different types of walls tested experimentally. The results are then extrapolated for modeling representative buildings in Bogot ' a. The geometric and mechanical characteristics of the walls correspond to those reported in actual tests, and those of the building are the characteristics indicated in representative building plans. Numerical modeling is performed through non-linear static pushover analysis and non-linear dynamic time-history analysis. The study proposes recommendations and limitations in using the NL-BTM model for modeling thin RC walls in actual buildings.
|
|
|
Chang, Y. C., Larrain, F. A., Fuentes-Hernandez, C., Park, Y., & Kippelen, B. (2023). Inverted organic tandem solar cells with a charge recombination stack employing spatially confined p-type electrical doping. J. Appl. Phys., 134(9), 095502.
Abstract: We report on the application of solution-based p-type electrical doping using 12-molybdophosphoric acid hydrate (PMA) to the fabrication of organic tandem solar cells. Such a doping approach leads to a spatially confined vertical doping profile down to a limited depth from the surface of polymer films, thus allowing the hole-collecting component of the charge recombination stack to be embedded in the photoactive layer of the bottom sub-cell. This simplifies the device architecture by removing the need for an extra dedicated hole-collecting layer. It is shown that this novel charge recombination stack comprising a PMA-doped bottom photoactive layer and a trilayer of Ag/AZO/PEIE is compatible with a solution-processed top photoactive layer. The fabricated inverted organic tandem solar cells exhibit an open-circuit voltage that is close to the sum of the open-circuit voltages of the individual sub-cells, and a fill factor that is close to the better fill factor of the two sub-cells.
|
|
|
Dumais, J. (2013). Modes of deformation of walled cells. J. Exp. Bot., 64(15), 4681–4695.
Abstract: The bewildering morphological diversity found in cells is one of the starkest illustrations of lifes ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modesuinextensional and equi-area deformationsuare embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.
|
|
|
Grigioni, I., Polo, A., Dozzi, M. V., Stamplecoskie, K. G., Jara, D. H., Kamat, P. V., et al. (2022). Enhanced Charge Carrier Separation in WO3/BiVO4 Photoanodes Achieved via Light Absorption in the BiVO4 Layer. ACS Appl. Energy Mater., 5(11), 13142–13148.
Abstract: Photoelectrochemical (PEC) water splitting converts solar light and water into oxygen and energy-rich hydrogen. WO3/BiVO4 heterojunction photoanodes perform much better than the separate oxide components, though internal charge recombination undermines their PEC performance when both oxides absorb light. Here we exploit the BiVO4 layer to sensitize WO3 to visible light and shield it from direct photoexcitation to overcome this efficiency loss. PEC experiments and ultrafast transient absorption spectroscopy performed by frontside (through BiVO4) or backside (through WO3) irradiating photoanodes with different BiVO4 layer thickness demonstrate that irradiation through BiVO4 is beneficial for charge separation. Optimized electrodes irradiated through BiVO4 show 40% higher photocurrent density compared to backside irradiation.
|
|
|
Henriquez, P. A., & Ruz, G. A. (2017). Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers. Neurocomputing, 226, 109–116.
Abstract: Extreme learning machine (ELM) is a machine learning technique based on competitive single-hidden layer feedforward neural network (SLFN). However, traclitional ELM and its variants are only based on random assignment of hidden weights using a uniform distribution, and then the calculation of the weights output using the least-squares method. This paper proposes a new architecture based on a non-linear layer in parallel by another non-linear layer and with entries of independent weights. We explore the use of a deterministic assignment of the hidden weight values using low-discrepancy sequences (LDSs). The simulations are performed with Halton and Sobol sequences. The results for regression and classification problems confirm the advantages of using the proposed method called PL-ELM algorithm with the deterministic assignment of hidden weights. Moreover, the PL-ELM algorithm with the deterministic generation using LDSs can be extended to other modified ELM algorithms.
|
|
|
Henriquez, P. A., & Ruz, G. A. (2019). Noise reduction for near-infrared spectroscopy data using extreme learning machines. Eng. Appl. Artif. Intell., 79, 13–22.
Abstract: The near infrared (NIR) spectra technique is an effective approach to predict chemical properties and it is typically applied in petrochemical, agricultural, medical, and environmental sectors. NIR spectra are usually of very high dimensions and contain huge amounts of information. Most of the information is irrelevant to the target problem and some is simply noise. Thus, it is not an easy task to discover the relationship between NIR spectra and the predictive variable. However, this kind of regression analysis is one of the main topics of machine learning. Thus machine learning techniques play a key role in NIR based analytical approaches. Pre-processing of NIR spectral data has become an integral part of chemometrics modeling. The objective of the pre-processing is to remove physical phenomena (noise) in the spectra in order to improve the regression or classification model. In this work, we propose to reduce the noise using extreme learning machines which have shown good predictive performances in regression applications as well as in large dataset classification tasks. For this, we use a novel algorithm called C-PL-ELM, which has an architecture in parallel based on a non-linear layer in parallel with another non-linear layer. Using the soft margin loss function concept, we incorporate two Lagrange multipliers with the objective of including the noise of spectral data. Six real-life dataset were analyzed to illustrate the performance of the developed models. The results for regression and classification problems confirm the advantages of using the proposed method in terms of root mean square error and accuracy.
|
|
|
Kumaresan, N., Alsalhi, M. S., Karuppasamy, P., Kumar, M. P., Pandian, M. S., Arulraj, A., et al. (2023). Nitrogen implanted carbon nanosheets derived from Acorus calamus as an efficient electrode for the supercapacitor application. Mol. Catal., 538, 112978.
Abstract: Modern society's biggest challenges are affordable, clean energy production and storage. Thus, recent research aims at the discovery of novel electrode materials for enhanced energy production and storage. Herein, nitrogen-implanted carbon particles were synthesized for the first time from the Acorus Calamus for the symmetric supercapacitor application. The KOH-activated carbon particles at 750 degrees C (C-750) under a nitrogen atmosphere revealed the better structural, textural, morphological, and electrochemical performance. The BET analysis confirmed that the C-750 carbon nanoparticles tremendously enhanced the surface area of about 3551.07 m(2)/g. Further, the pore size and pore volume were obtained from BJH analysis that showed 3.70 nm and 0.51 cc/g, respectively. The high surface area along with the mesoporous nature of the C-750 sample effectively enhanced the specific capacitance to 354.44 Fg(-1) at 1 Ag-1 using a 6 M KOH electrolytic solution. Further, the enhancement of energy and power density of the C-750 was observed at about 47.2 Whkg(-1) and 16,000 Wkg(-1), respectively.
|
|
|
Morales, P., Lozada, A., Borquez-Paredes, D., Olivares, R., Saavedra, G., Leiva, A., et al. (2021). Improving the Performance of SDM-EON Through Demand Prioritization: A Comprehensive Analysis. IEEE Access, 9, 63475–63490.
Abstract: This paper studies the impact of demand-prioritization on Space-Division Multiplexing Elastic Optical Networks (SDM-EON). For this purpose, we solve the static Routing, Modulation Level, Spatial Mode, and Spectrum Assignment (RMLSSA) problem using 34 different explainable demand-prioritization strategies. Although previous works have applied heuristics or meta-heuristics to perform demand-prioritization, they have not focused on identifying the best prioritization strategies, their inner operation, and the implications behind their good performance by thorough profiling and impact analysis. We focus on a comprehensive analysis identifying the best explainable strategies to sort network demands in SDM-EON, considering the physical-layer impairments found in optical communications. Also, we show that simply using the common shortest path routing might lead to higher resource requirements. Extensive simulation results show that up to 8.33% capacity savings can be achieved on average by balanced routing, up to a 16.69% capacity savings can be achieved using the best performing demand-prioritization strategy compared to the worst-performing ones, the most used demand-prioritization strategy in the literature (serving demands with higher bandwidth requirements first) is not the best-performing one but the one sorting based on the path lengths, and using double-criteria strategies to break ties is key for a good performance. These results are relevant showing that a good combination of routing and demand-prioritization heuristics impact significantly on network performance. Additionally, they increase the understanding about the inner workings of good heuristics, a valuable knowledge when network settings forbid using more computationally complex approaches.
|
|
|
Nam, M., Park, Y., Lee, C., Kim, G., Larrain, F. A., Fuente-Hernandez, C., et al. (2023). Single-layer organic photovoltaics fabricated via solution-based electrical doping of ternary bulk heterojunction films. Chem. Eng. J., 466, 143340.
Abstract: The commercial viability of organic photovoltaics (OPVs) can be improved by simplifying their device geometry and easing fabrication complexity. Here, we demonstrate that solution-based p-type electrical doping of ternary bulk heterojunction (BHJ) films, which comprise 2 donor polymers and 1 fullerene acceptor (2D:1A), enables the realization of efficient single-layer OPVs. Systematic and detailed investigations of the optoelectronic charac-teristics of films with varying donor ratios, and their photovoltaic performance, demonstrate p-type electrical doping via post-process immersion into a 12-molybdophosphoric acid hydrate (PMA) solution, resulting in a reduced trap density and charge recombination without significantly changing the BHJ morphology. Further-more, PMA doping of films comprising optimized ternary blend compositions and polyethylenimine enables the demonstration of single-layer OPVs with economic top electrode metals and a high level of performance under outdoor and indoor illumination conditions. These PMA-doped 2D:1A BHJ films are an attractive platform to reduce the efficiency-cost gap and accelerate the commercialization of OPVs for emerging applications.
|
|
|
Nandhakumar, E., Selvakumar, P., Arulraj, A., Vivek, E., Venkatraman, M. R., Sasikumar, A., et al. (2023). Investigation on rod like SnO2@CdCO3 nanocomposite-based electron transport layer for CsPbBr3 heterojunction perovskite solar cell applications br. Mater. Lett., 330, 133396.
Abstract: A novel carbonate-based nanocomposite synthesized by hydrothermal technique for planar perovskite solar cells (PPSCs) applications. According to this study, SnO2@CdCO3and SnO2/SnO2@CdCO3 performs as dual electron transporting layers for CsPbBr3 based perovskite solar cell. The fabricated PSCs with architecture of FTO/SnO2/ SnO2@CdCO3/CsPbBr3/C showed a Voc of 0.84 V, Jsc of 12.30 mA cmi 2, PCE of 6.67 % and FF of 0.64 are obtained at ambient condition.
|
|
|
Pandiyarajan, T., Mangalaraja, R. V., Karthikeyan, B., Arulraj, A., & Gracia-Pinilla, M. A. (2023). Fabrication and spectroscopic investigation of sandwich-like ZnO:rGO:ZnO: rGO:ZnO structure by layer-by-layer approach. Inorg. Chem. Commun., 149, 110383.
Abstract: Transparent conducting materials (TCMs) are the heart of modern optoelectronic industries and the properties of TCMs could be improved by the introduction of 2D carbon materials. In this report, the influence of order layering on microstructural, transparency and emission characteristics of ZnO:rGO:ZnO:rGO:ZnO and rGO:ZnO: rGO:ZnO:rGO sandwich structures has been investigated. The layer-by-layer approach has been adopted for the fabrication of sandwich structured materials ZnO:rGO:ZnO:rGO:ZnO and rGO:ZnO:rGO:ZnO:rGO through the spin coating technique. The sandwich structures of ZnO and rGO exhibited hexagonal wurtzite structure of ZnO without any impurities were identified through XRD. The ordering of layer's influenced the microstructural parameters and were significantly altered. The spherical nature of the particles and the formation of the sand-wich structures were confirmed by using SEM micrograph. The reduction in an optical transparency and nar-rowing bandgap of the ZnO upon the order of layering were identified through transmission spectra. The lower energy shift of near band edge (NBE) emission and reduction in the emission intensity with respect to pure ZnO nanostructures was observed. The present work provides a simple layer-by-layer approach to fabricating sand-wich structures and improving the optical properties which have potential applications in various optoelectronic devices.
|
|
|
Pinto, J., Aylwin, R., & Jerez-Hanckes, C. (2021). Fast solver for quasi-periodic 2D-Helmholtz scattering in layered media. ESAIM-Math. Model. Numer. Anal., 55(5), 2445–2472.
Abstract: We present a fast spectral Galerkin scheme for the discretization of boundary integral equations arising from two-dimensional Helmholtz transmission problems in multi-layered periodic structures or gratings. Employing suitably parametrized Fourier basis and excluding cut-off frequencies (also known as Rayleigh-Wood frequencies), we rigorously establish the well-posedness of both continuous and discrete problems, and prove super-algebraic error convergence rates for the proposed scheme. Through several numerical examples, we confirm our findings and show performances competitive to those attained via Nyström methods.
|
|
|
Thomsen, M., Cruz, J. J., Escudero, F., Fuentes, A., Fernandez-Pello, C., Gollner, M., et al. (2023). Determining flame temperature by broadband two color pyrometry in a flame spreading over a thin solid in microgravity. Proc. Combust. Inst., 39(3), 3909–3918.
Abstract: Fire spread inside a spacecraft is a constant concern in space travel. Understanding how the fire grows and spreads, and how it can potentially be extinguished is critical for planning future missions. The conditions in-side a spacecraft can greatly vary from those encountered on earth, including microgravity, low velocity flows, reduced ambient pressure and high oxygen, and thus affecting the combustion processes. In microgravity, the contributions of thermal radiation from gaseous species and soot can play a critical role in the spread of a flame and the problem has not been fully understood yet. The overall objective of this work is to address this by studying the soot temperature of microgravity flames spreading over a thin solid in microgravity. The ex-periments presented here were performed as part of the NASA project Saffire IV, conducted in orbit on board the Cygnus resupply vehicle before it re-entered the Earth's atmosphere. The fuel considered is a thin fabric made of cotton and fiberglass (Sibal) exposed to a forced flow of 20 cm/s in a concurrent flow configuration. Reconstruction of the flame temperature fields is extracted from two color broadband emission pyrometry (B2CP) as the flame propagates over the solid fuel. A methodology, relevant assumptions and its applicability to other microgravity experiments are discussed here. The data obtained shows that the technique provides an acceptable average temperature around similar to 1300 K, which remains relatively constant during the spread with an error value smaller than 117 K. The data presented in this work provides a methodology that could be applied to other microgravity experiments to be performed by NASA. It is expected that the results will provide insight for what is to be expected in different conditions relevant for fire safety in future space facilities. (c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
|
|
|
Werlinger, F., Segura, C., Martinez, J., Osorio-Roman, I., Jara, D., Yoon, S. J., et al. (2023). Current Progress of Efficient Active Layers for Organic, Chalcogenide and Perovskite-Based Solar Cells: A Perspective. Energies, 16(16), 5868.
Abstract: Photovoltaics has become one of the emerging alternatives to progressively supply/replace conventional energy sources, considering the potential exploitation of solar energy. Depending on the nature of the light harvester to influence on its light-absorption capability and the facility to produce electricity, different generations of solar devices have been fabricated. Early studies of organic molecules (dye sensitizers) with good absorption coefficients, going through metal chalcogenides and, lastly, the timely emergence of halide perovskites, have promoted the development of novel and low-cost solar cells with promising photoconversion efficiency (PCE), close to the well-established Si-based devices. However, main drawbacks such as the degradation/photocorrosion of the active layer, the existence of intrinsic defect sites, and the inherent toxicity of the material due to the presence of some harmful elements have blocked the future commercialization of the above kind of solar cells. In this review, we highlight the current progress in achieving efficient photomaterials for organic, chalcogenides and halide perovskites-based solar cells with the purpose of achieving high PCE values, some of which are breakthroughs in this research topic, and the diverse approaches used to extend the stability of the active layer and improve the performance of the solar devices.
|
|