|
Cardenas, C., Guzman, F., Carmona, M., Munoz, C., Nilo, L., Labra, A., et al. (2020). Synthetic Peptides as a Promising Alternative to Control Viral Infections in Atlantic Salmon. Pathogens, 9(8), 600.
Abstract: Viral infections in salmonids represent an ongoing challenge for the aquaculture industry. Two RNA viruses, the infectious pancreatic necrosis virus (IPNV) and the infectious salmon anemia virus (ISAV), have become a latent risk without healing therapies available for either. In this context, antiviral peptides emerge as effective and relatively safe therapeutic molecules. Based on in silico analysis of VP2 protein from IPNV and the RNA-dependent RNA polymerase from ISAV, a set of peptides was designed and were chemically synthesized to block selected key events in their corresponding infectivity processes. The peptides were tested in fish cell lines in vitro, and four were selected for decreasing the viral load: peptide GIM182 for IPNV, and peptides GIM535, GIM538 and GIM539 for ISAV. In vivo tests with the IPNV GIM 182 peptide were carried out using Salmo salar fish, showing a significant decrease of viral load, and proving the safety of the peptide for fish. The results indicate that the use of peptides as antiviral agents in disease control might be a viable alternative to explore in aquaculture.`
|
|
|
Melo, I. C., Alves, P. N., Queiroz, G. A., Yushimito, W., & Pereira, J. (2023). Do We Consider Sustainability When We Measure Small and Medium Enterprises' (SMEs') Performance Passing through Digital Transformation? Sustainability, 15(6), 4917.
Abstract: Small-medium enterprises (SMEs) represent 90% of business globally. Digital Transformation (DT) affects SMEs differently from larger companies because although SMEs have more flexibility and agility for adapting to new circumstances, they also have more limited resources and specialization capabilities. Thus, it is fundamental to measure SMEs' performance considering different perspectives. Here, we describe and analyze the state-of-the-art of DT in SMEs, focusing on performance measurement. We center on whether the tools used by SMEs encompass the triple bottom line of sustainability (i.e., environmental, social, and economic aspects). To do so, in December 2021, we performed a comprehensive systematic literature review (SLR) on the Web of Science and Scopus. In addition, we also explored a novel approach for SLR: topic modeling with a machine learning technique (Latent Dirichlet Allocation). The differences and interchangeability of both methods are discussed. The findings show that sustainability is treated as a separate topic in the literature. The social and environmental aspects are the most neglected. This paper contributes to sustainable development goals (SDGs) 1, 5, 8, 9, 10, and 12. A conceptual framework and future research directions are proposed. Thus, this paper is also valuable for policymakers and SMEs switching their production paradigm toward sustainability and DT.
|
|
|
Wolff, P., Rios, S., Clavijo, D., Grana, M., & Carrasco, M. (2020). Methodologically grounded semantic analysis of large volume of chilean medical literature data applied to the analysis of medical research funding efficiency in Chile. J. Biomed. Semant., 11(1), 10 pp.
Abstract: Background Medical knowledge is accumulated in scientific research papers along time. In order to exploit this knowledge by automated systems, there is a growing interest in developing text mining methodologies to extract, structure, and analyze in the shortest time possible the knowledge encoded in the large volume of medical literature. In this paper, we use the Latent Dirichlet Allocation approach to analyze the correlation between funding efforts and actually published research results in order to provide the policy makers with a systematic and rigorous tool to assess the efficiency of funding programs in the medical area. Results We have tested our methodology in the Revista Medica de Chile, years 2012-2015. 50 relevant semantic topics were identified within 643 medical scientific research papers. Relationships between the identified semantic topics were uncovered using visualization methods. We have also been able to analyze the funding patterns of scientific research underlying these publications. We found that only 29% of the publications declare funding sources, and we identified five topic clusters that concentrate 86% of the declared funds. Conclusions Our methodology allows analyzing and interpreting the current state of medical research at a national level. The funding source analysis may be useful at the policy making level in order to assess the impact of actual funding policies, and to design new policies.
|
|
|
Zhang, H. L., Baeyens, J., Caceres, G., Degreve, J., & Lv, Y. Q. (2016). Thermal energy storage: Recent developments and practical aspects. Prog. Energy Combust. Sci., 53, 1–40.
Abstract: Thermal energy storage (TES) transfers heat to storage media during the charging period, and releases it at a later stage during the discharging step. It can be usefully applied in solar plants, or in industrial processes, such as metallurgical transformations. Sensible, latent and thermo-chemical media store heat in materials which change temperature, phase or chemical composition, respectively. Sensible heat storage is well-documented. Latent heat storage, using phase change materials (PCMs), mainly using liquid solid transition to store latent heat, allows a more compact, efficient and therefore economical system to operate. Thermo-chemical heat storage (TCS) is still at an early stage of laboratory and pilot research despite its attractive application for long term energy storage. The present review will assess previous research, while also adding novel treatments of the subject. TES systems are of growing importance within the energy awareness: TES can reduce the LCOE (levelized cost of electricity) of renewable energy processes, with the temperature of the storage medium being the most important parameter. Sensible heat storage is well-documented in literature and applied at large scale, hence limited in the content of the present review paper. Latent heat storage using PCMs is dealt with, specifically towards high temperature applications, where inorganic substances offer a high potential. Finally, the use of energy storage through reversible chemical reactions (thermo-chemical Storage, TCS) is assessed. Since PCM and TCS storage media need to be contained in a capsule (sphere, tube, sandwich plates) of appropriate materials, potential containment materials are examined. A heat transfer fluid (HTF) is required to convey the heat from capture, to storage and ultimate re-use. Particle suspensions offer a valid alternative to common HTF, and a preliminary assessment confirms the advantages of the upflow bubbling fluidized bed and demonstrates that particulate suspensions enable major savings in investment and operating costs. Novel treatments of the TES subject in the review involve the required encapsulation of the latent and chemical storage media, the novel development of powder circulation loops as heat transfer media, the conductivity enhancement of PCMs, the use of lithium salts, among others. (C) 2015 Elsevier Ltd. All rights reserved.
|
|
|
Zhang, H. L., Baeyens, J., Degreve, J., Caceres, G., Segal, R., & Pitie, F. (2014). Latent heat storage with tubular-encapsulated phase change materials (PCMs). Energy, 76, 66–72.
Abstract: Heat capture and storage is important in both solar energy projects and in the recovery of waste heat from industrial processes. Whereas heat capture will mostly rely on the use of a heat carrier, the high efficiency heat storage needs to combine sensible and latent heat storage with phase change materials (PCMs) to provide a high energy density storage. The present paper briefly reviews energy developments and storage techniques, with special emphasis on thermal energy storage and the use of PCM. It thereafter illustrates first results obtained when encapsulating NaNO3/KNO3-PCM in an AISI 321 tube, as example of a storage application using a multi-tubular exchanger filled with PCM. To increase the effective thermal conductivity of the PCM, 2 inserts i.e. metallic foam and metallic sponge are also tested. Experimental discharging (cooling) rates are interpreted by both solving the unsteady-state conduction equation, and by using Comsol Multiphysics. Predictions and experimental temperature evolutions are in fair agreement, and the effect of the inserts is clearly reflected by the increased effective thermal conductivity of the insert-PCM composite. Application of Comsol to predict the mechanical behavior of the system, when melting and associated expansion increase the internal pressure, demonstrates that the pressure build-up is far below the Young's modulus of the AISI 321 encapsulation and that this shell will not crack (C) 2014 Elsevier Ltd. All rights reserved.
|
|