Alejo, L., Atkinson, J., Guzman-Fierro, V., & Roeckel, M. (2018). Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques. Environ. Sci. Pollut. Res., 25(21), 21149–21163.
Abstract: Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes.
|
Allende, H., Salas, R., & Moraga, C. (2003). A robust and effective learning algorithm for feedforward neural networks based on the influence function. Lect. Notes Comput. Sc., 2652, 28–36.
Abstract: The learning process of the Feedforward Artificial Neural Networks relies on the data, though a robustness analysis of the parameter estimates of the model must be done due to the presence of outlying observations in the data. In this paper we seek the robust properties in the parameter estimates in the sense that the influence of aberrant observations or outliers in the estimate is bounded so the neural network is able to model the bulk of data. We also seek a trade off between robustness and efficiency under a Gaussian model. An adaptive learning procedure that seeks both aspects is developed. Finally we show some simulations results applied to the RESEX time series.
|
Alvarenga, T. C., De Lima, R. R., Simao, S. D., Junior, L. C. B., Bueno, J. S. D., Alvarenga, R. R., et al. (2022). Ensemble of hybrid Bayesian networks for predicting the AMEn of broiler feedstuffs. Comput. Electron. Agric., 198, 107067.
Abstract: To adequately meet the nutritional needs of broilers, it is necessary to know the values of apparent metabolizable energy corrected by the nitrogen balance (AMEn) of the feedstuffs. To determine AMEn values, biological assays, feedstuff composition tables, or prediction equations are used as a function of the chemical composition of feedstuffs, the latter using statistical methodologies such as multiple linear regression, neural networks, and Bayesian networks (BN). BN is a statistical and computational methodology that consists of graphical (graph) and probabilistic models of quantitative and/or qualitative variables. Ensembles of BN in the area of broiler nutrition are expected, as there is no research showing their AMEn prediction performance. The purpose of this article is to propose and use ensembles of hybrid Bayesian networks (EHBNs) and obtain prediction equations for the AMEn of feedstuffs used in broiler nutrition from their chemical compositions. We trained 100, 1,000, and 10,000 EHBN, and in this way, empirical distributions were found for the coefficients of the covariates (crude protein, ether extract, mineral matter, and crude fiber). Thus, the mean, median, and mode of these distributions were calculated to build prediction equations for AMEn. It is observed that the method for obtaining the coefficients of the covariates discussed in this article is an unprecedented proposal in the field of broiler nutrition. The data used to obtain the equations were obtained by meta-analysis, and the data for the validation of the equations were obtained from metabolic tests. The proposed equations were evaluated by precision measures such as the mean square error (MSE), mean absolute deviation (MAD), and mean absolute percentage error (MAPE). The best equations for predicting AMEn were derived from the mean or mode coefficients for the 10,000 EHBN results. In conclusion, the methodology used is a good tool to obtain prediction equations for AMEn as a function of the chemical composition of their feedstuffs. The coefficients were found to differ from those found by other methodologies, such as the usual neural network or multiple linear regressions. The field of broiler nutrition contributed with new equations and with a never-applied methodology and differentiated in obtaining its coefficients by empirical distributions.
|
Alzate-Grisales, J. A., Mora-Rubio, A., García-García, F., Tabares-Soto, R., & de la Iglesia-Vaya, M. (2023). SAM-UNETR: Clinically Significant Prostate CanceSegmentation Using Transfer Learning From Large Model. IEEE Access, 11, 118217–118228.
Abstract: Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.
|
Arevalo-Ramirez, T., Villacres, J., Fuentes, A., Reszka, P., & Cheein, F. A. A. (2020). Moisture content estimation of Pinus radiata and Eucalyptus globulus from reconstructed leaf reflectance in the SWIR region. Biosyst. Eng., 193, 187–205.
Abstract: Valparaiso, a central-southern region in Chile, has one of the highest rates of wildfire occurrence in the country. The constant threat of fires is mainly due to its highly flammable forest plantation, composed of 97.5% Pinus radiata and Eucalyptus globulus. Fuel moisture content is one of the most relevant parameters for studying fire spreading and risk, and can be estimated from the reflectance of leaves in the short wave infra-red (SWIR) range, not easily available in most vision-based sensors. Therefore, this work addresses the problem of estimating the water content of leaves from the two previously mentioned species, without any knowledge of their spectrum in the SWIR band. To this end, and for validation purposes, the reflectance of 90 leaves per species, at five dehydration stages, were taken between 350 nm and 2500 nm (full spectrum). Then, two machine-learning regressors were trained with 70% of the data set to determine the unknown reflectance, in the range 1000 nm-2500 nm. Results were validated with the remaining 30% of the data, achieving a root mean square error less than 9% in the spectrum estimation, and an error of 10% in spectral indices related to water content estimation. (C) 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
|
Arevalo-Ramirez, T. A., Castillo, A. H. F., Cabello, P. S. R., & Cheein, F. A. A. (2021). Single bands leaf reflectance prediction based on fuel moisture content for forestry applications. Biosyst. Eng., 202, 79–95.
Abstract: Vegetation indices can be used to perform quantitative and qualitative assessment of vegetation cover. These indices exploit the reflectance features of leaves to predict their biophysical properties. In general, there are different vegetation indices capable of describing the same biophysical parameter. For instance, vegetation water content can be inferred from at least sixteen vegetation indices, where each one uses the reflectance of leaves in different spectral bands. Therefore, if the leaf moisture content, a vegetation index and the reflectance at the wavelengths to compute the vegetation index are known, then the reflectance in other spectral bands can be computed with a bounded error. The current work proposes a method to predict, by a machine learning regressor, the leaf reflectance (spectral signature) at specific spectral bands using the information of leaf moisture content and a single vegetation index of two tree species (Pinus radiata, and Eucalyptus globulus), which constitute 97.5% of the Valparai ' so forests in Chile. Results suggest that the most suitable vegetation index to predict the spectral signature is the Leaf Water Index, which using a Kernel Ridge Regressor achieved the best prediction results, with an RMSE lower than 0.022, and an average R2 greater than 0.95 for Pinus radiata and 0.81 for Eucalyptus globulus, respectively. (c) 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
|
Bertossi, L., & Geerts, F. (2020). Data Quality and Explainable AI. ACM J. Data Inf. Qual., 12(2), 11.
Abstract: In this work, we provide some insights and develop some ideas, with few technical details, about the role of explanations in Data Quality in the context of data-based machine learning models (ML). In this direction, there are, as expected, roles for causality, and explainable artificial intelligence. The latter area not only sheds light on the models, but also on the data that support model construction. There is also room for defining, identifying, and explaining errors in data, in particular, in ML, and also for suggesting repair actions. More generally, explanations can be used as a basis for defining dirty data in the context of ML, and measuring or quantifying them. We think dirtiness as relative to the ML task at hand, e.g., classification.
|
Billi, M., Mascareno, A., Henriquez, P. A., Rodriguez, I., Padilla, F., & Ruz, G. A. (2022). Learning from crises? The long and winding road of the salmon industry in Chiloe Island, Chile. Mar. Pol., 140, 105069.
Abstract: The rapid development of salmon aquaculture worldwide and the growing criticism of the activity in recent decades have raised doubts about the capacity of the sector to learn from its own crises. In this article, we assess the discursive, behavioral and outcome performance dimensions of the industry to identify actual learning and lessons to be learned. We focus on the case of Chiloe Island, Chile, a global center of salmon production since 1990 that has gone through two severe crises in the last 15 years (2007-2009 ISAV crisis and 2016 red tide crisis). On the basis of a multi-method approach combining qualitative analysis of interviews and statistical data analysis, we observe that the industry has discursively learned the relevance of both self-regulation and the wellbeing of communities. However, at the behavioral and outcome performance levels, the data show a highly heterogeneous conduct that questions the ability of the sector as a whole to learn from crises. We conclude that detrimental effects for ecosystems and society will increase if learning remains at the level of discourses. Without significant changes in operational practices and market performance there are no real perspectives for the sustainability of the industry. This intensifies when considering the uneven responses to governance mechanisms. The sector needs to adapt its factual performance to sustainable goals and reflexively monitor this process. The first step for achieving this is to produce reliable data to make evidence-based decisions that align the operational dynamics of the entire sector with a more sustainable trajectory in the near future, as well as advancing towards hybrid and more reflexive governance arrangements.
|
Blanco, K., Salcidua, S., Orellana, P., Sauma, T., Leon, T., Lopez-Steinmetz, L. C., et al. (2023). Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimers disease. Alzheimer's Res. Ther., Early Access.
Abstract: Mild cognitive impairment ( AQ1 MCI) is often considered an early stage of dementia, with estimated rates of progression to dementia up to 80�90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impairment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it is due to Alzheimer�s disease (AD). However, only a limited percentage of the population has access to etiological confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical models and multimodal machine learning (ML) algorithms for
the diagnosis of MCI based on fluid biomarkers from CSF, peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, including AD. After a PRISMA analysis, 29 articles revealed a trend
towards using multimodal algorithms that incorporate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, neuroimaging is commonly used in conjunction with fluid biomarkers for both crosssectional and longitudinal studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the development of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, could prove pivotal in improving diagnostic tools for MCI due to AD.
|
Cabrera, I., Villalon, J., & Chavez, J. (2017). Blending Communities and Team-Based Learning in a Programming Course. IEEE Trans. Educ., 60(4), 288–295.
Abstract: In recent years, engineering education teachers have needed to incorporate technology-supported collaboration to enhance learning. Implementing these activities requires course redesign, which must be meticulous for their full potential to be reached. This can require a lot of work for first time users, which can be a barrier to implementation. Educational design patterns alleviate this burden by facilitating new course design with practices demonstrated to promote student engagement. This paper reports on the redesign of an introductory programming course and its experimental evaluation. The redesign was based on the community of inquiry learning framework (CoL), using design patterns from online Web communities and team-based learning (TBL). The evaluation included 562 students, 117 of them randomly assigned to two different experimental groups. One group used a CoL approach, and the other a blended TBL and CoL methodology. The remaining students were assigned to control groups. Results showed that students in the experimental groups outperformed those in the control group by the end of the semester, while the experimental CoL and TBL methodology helped students achieve a higher level of understanding in a shorter period of time due to increased participation rates. These data provide empirical evidence of the learning gains offered by online learning communities, and the way in which educational design patterns can facilitate course redesign.
|
Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W., et al. (2023). Semi-Supervised vs. Supervised Learning for Mental Health Monitoring: A Case Study on Bipolar Disorder. Int. J. Appl. Math. Comput. Sci., 33(3), 419–428.
Abstract: Acoustic features of speech are promising as objective markers for mental health monitoring. Specialized smartphone apps can gather such acoustic data without disrupting the daily activities of patients. Nonetheless, the psychiatric assessment of the patient's mental state is typically a sporadic occurrence that takes place every few months. Consequently, only a slight fraction of the acoustic data is labeled and applicable for supervised learning. The majority of the related work on mental health monitoring limits the considerations only to labeled data using a predefined ground-truth period. On the other hand, semi-supervised methods make it possible to utilize the entire dataset, exploiting the regularities in the unlabeled portion of the data to improve the predictive power of a model. To assess the applicability of semi-supervised learning approaches, we discuss selected state-of-the-art semi-supervised classifiers, namely, label spreading, label propagation, a semi-supervised support vector machine, and the self training classifier. We use real-world data obtained from a bipolar disorder patient to compare the performance of the different methods with that of baseline supervised learning methods. The experiment shows that semi-supervised learning algorithms can outperform supervised algorithms in predicting bipolar disorder episodes.
|
Decker, L., Leite, D., Minarini, F., Tisbeni, S. R., & Bonacorsi, D. (2022). Unsupervised Learning and Online Anomaly Detection: An On-Condition Log-Based Maintenance System. Int. J. Embed. Real-Time Commun. Syst., 13(1).
Abstract: The large hadron collider (LHC) demands a huge amount of computing resources to deal with petabytes of data generated from high energy physics (HEP) experiments and user logs, which report user activity within the supporting worldwide LHC computing grid (WLCG). An outburst of data and information is expected due to the scheduled LHC upgrad, that is, the workload of the WLCG should increase by 10 times in the near future. Autonomous system maintenance by means of log mining and machine learning algorithms is of utmost importance to keep the computing grid functional. The aim is to detect software faults, bugs, threats, and infrastructural problems. This paper describes a general-purpose solution to anomaly detection in computer grids using unstructured, textual, and unsupervised data. The solution consists in recognizing periods of anomalous activity based on content and information extracted from user log events. This study has particularly compared one-class SVM, isolation forest (IF), and local outlier factor (LOF). IF provides the best fault detection accuracy, 69.5%.
|
Dumett, M. A., & Cominetti, R. (2018). On The Stability Of An Adaptive Learning Dynamics In Traffic Games. J. Dyn. Games, 5(4), 265–282.
Abstract: This paper investigates the dynamic stability of an adaptive learning procedure in a traffic game. Using the Routh-Hurwitz criterion we study the stability of the rest points of the corresponding mean field dynamics. In the special case with two routes and two players we provide a full description of the number and nature of these rest points as well as the global asymptotic behavior of the dynamics. Depending on the parameters of the model, we find that there are either one, two or three equilibria and we show that in all cases the mean field trajectories converge towards a rest point for almost all initial conditions.
|
Escapil-Inchauspe, P., & Ruz, G. A. (2023). h-Analysis and data-parallel physics-informed neural networks. Sci. Rep., 13(1), 17562.
Abstract: We explore the data-parallel acceleration of physics-informed machine learning (PIML) schemes, with a focus on physics-informed neural networks (PINNs) for multiple graphics processing units (GPUs) architectures. In order to develop scale-robust and high-throughput PIML models for sophisticated applications which may require a large number of training points (e.g., involving complex and high-dimensional domains, non-linear operators or multi-physics), we detail a novel protocol based on h-analysis and data-parallel acceleration through the Horovod training framework. The protocol is backed by new convergence bounds for the generalization error and the train-test gap. We show that the acceleration is straightforward to implement, does not compromise training, and proves to be highly efficient and controllable, paving the way towards generic scale-robust PIML. Extensive numerical experiments with increasing complexity illustrate its robustness and consistency, offering a wide range of possibilities for real-world simulations.
|
Fernandez, C., Valle, C., Saravia, F., & Allende, H. (2012). Behavior analysis of neural network ensemble algorithm on a virtual machine cluster. Neural Comput. Appl., 21(3), 535–542.
Abstract: Ensemble learning has gained considerable attention in different learning tasks including regression, classification, and clustering problems. One of the drawbacks of the ensemble is the high computational cost of training stages. Resampling local negative correlation (RLNC) is a technique that combines two well-known methods to generate ensemble diversity-resampling and error negative correlation-and a fine-grain parallel approach that allows us to achieve a satisfactory balance between accuracy and efficiency. In this paper, we introduce a structure of the virtual machine aimed to test diverse selection strategies of parameters in neural ensemble designs, such as RLNC. We assess the parallel performance of this approach on a virtual machine cluster based on the full virtualization paradigm, using speedup and efficiency as performance metrics, for different numbers of processors and training data sizes.
|
Gaona, J., Hernández, R., Guevara, F., & Bravo, V. (2022). Influence of a Function’s Coefficients and Feedback of the Mathematical Work When Reading a Graph in an Online Assessment System. Int. J. Emerg. Technol. Learn., 17(20), 77–98.
Abstract: This paper shows the results of an experiment applied to 170
students from two Chilean universities who solve a task about reading a graph
of an affine function in an online assessment environment where the parameters
(coefficients of the graphed affine function) are randomly defined from an ad-hoc
algorithm, with automatic correction and automatic feedback. We distinguish two
versions: one of them with integer coefficients and the other one with decimal
coefficients in the affine function. We observed that the nature of the coefficients
impacts the mathematical work used by the students, where we again focus on
two of them: by direct estimation from the graph or by calculating the equation of
the line. On the other hand, feedback oriented towards the “estimation” strategy
influences the mathematical work used by the students, even though a non-negligible
group persists in the “calculating” strategy, which is partly explained by the
perception of each of the strategies.
|
Gonzalez-Martin, C., Carrasco, M., & Oviedo, G. (2022). Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic. Sustainability, 14(20), 12989.
Abstract: Color is a complex communicative element. At the level of artistic creation, this component influences both formal aspects and symbolic weight, directly affecting the construction of the message, and its associated emotion. During the COVID-19 pandemic, people generated countless images transmitting the subjective experiences of this event, and the social network Instagram was used to share this visual material. Using the repository of images created in the Instagram account CAM (The COVID Art Museum), we propose a methodology to understand the use of color and its emotional relationship in this context. The proposed methodology consists of creating a model that learns to recognize emotions via a convolutional neural network using the ArtEmis database. This model will subsequently be applied to recognize emotions in the CAM dataset, also extracting color attributes and their harmonies. Once both processes are completed, we combine the results, generating an expanded discussion on the usage of color and emotion. The results indicate that warm colors and analog compositions prevail in the sample. The relationship between emotions and composition shows a trend in positive emotions, reinforced by the results of the emotional relationship analysis of color attributes (hue, saturation, and lighting).
|
Gonzalez-Martin, C., Carrasco, M., & Wielandt, T. G. W. (2023). Detection of Emotions in Artworks Using a Convolutional Neural Network Trained on Non-Artistic Images: A Methodology to Reduce the Cross-Depiction Problem. Empir. Stud. Arts, Early Access.
Abstract: This research is framed within the study of automatic recognition of emotions in artworks, proposing a methodology to improve performance in detecting emotions when a network is trained with an image type different from the entry type, which is known as the cross-depiction problem. To achieve this, we used the QuickShift algorithm, which simplifies images' resources, and applied it to the Open Affective Standardized Image (OASIS) dataset as well as the WikiArt Emotion dataset. Both datasets are also unified under a binary emotional system. Subsequently, a model was trained based on a convolutional neural network using OASIS as a learning base, in order to then be applied on the WikiArt Emotion dataset. The results show an improvement in the general prediction performance when applying QuickShift (73% overall). However, we can observe that artistic style influences the results, with minimalist art being incompatible with the methodology proposed.
|
Guevara, E., Babonneau, F., Homem-de-Mello, T., & Moret, S. (2020). A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty. Appl. Energy, 271, 18 pp.
Abstract: This paper investigates how the choice of stochastic approaches and distribution assumptions impacts strategic investment decisions in energy planning problems. We formulate a two-stage stochastic programming model assuming different distributions for the input parameters and show that there is significant discrepancy among the associated stochastic solutions and other robust solutions published in the literature. To remedy this sensitivity issue, we propose a combined machine learning and distributionally robust optimization (DRO) approach which produces more robust and stable strategic investment decisions with respect to uncertainty assumptions. DRO is applied to deal with ambiguous probability distributions and Machine Learning is used to restrict the DRO model to a subset of important uncertain parameters ensuring computational tractability. Finally, we perform an out-of-sample simulation process to evaluate solutions performances. The Swiss energy system is used as a case study all along the paper to validate the approach.
|
Gutierrez-Portela, F., Arteaga-Arteaga, B. H., Almenares-Mendoza, F., Calderon-Benavente, L., Acosta-Mesa, H. G., & Tabares-Soto. R. (2023). Enhancing Intrusion Detection in IoT Communications Through ML Model Generalization With a New Dataset (IDSAI). IEEE Access, 11, 70542–70559.
Abstract: One of the fields where Artificial Intelligence (AI) must continue to innovate is computer security. The integration of Wireless Sensor Networks (WSN) with the Internet of Things (IoT) creates ecosystems of attractive surfaces for security intrusions, being vulnerable to multiple and simultaneous attacks. This research evaluates the performance of supervised ML techniques for detecting intrusions based on network traffic captures. This work presents a new balanced dataset (IDSAI) with intrusions generated in attack environments in a real scenario. This new dataset has been provided in order to contrast model generalization from different datasets. The results show that for the detection of intruders, the best supervised algorithms are XGBoost, Gradient Boosting, Decision Tree, Random Forest, and Extra Trees, which can generate predictions when trained and predicted with ten specific intrusions (such as ARP spoofing, ICMP echo request Flood, TCP Null, and others), both of binary form (intrusion and non-intrusion) with up to 94% of accuracy, as multiclass form (ten different intrusions and non-intrusion) with up to 92% of accuracy. In contrast, up to 90% of accuracy is achieved for prediction on the Bot-IoT dataset using models trained with the IDSAI dataset.
|