| 
Citations
 | 
   web
Alejo, L., Atkinson, J., Guzman-Fierro, V., & Roeckel, M. (2018). Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques. Environ. Sci. Pollut. Res., 25(21), 21149–21163.
toggle visibility
Allende, H., Salas, R., & Moraga, C. (2003). A robust and effective learning algorithm for feedforward neural networks based on the influence function. Lect. Notes Comput. Sc., 2652, 28–36.
toggle visibility
Alvarenga, T. C., De Lima, R. R., Simao, S. D., Junior, L. C. B., Bueno, J. S. D., Alvarenga, R. R., et al. (2022). Ensemble of hybrid Bayesian networks for predicting the AMEn of broiler feedstuffs. Comput. Electron. Agric., 198, 107067.
toggle visibility
Alzate-Grisales, J. A., Mora-Rubio, A., García-García, F., Tabares-Soto, R., & de la Iglesia-Vaya, M. (2023). SAM-UNETR: Clinically Significant Prostate CanceSegmentation Using Transfer Learning From Large Model. IEEE Access, 11, 118217–118228.
toggle visibility
Arevalo-Ramirez, T., Villacres, J., Fuentes, A., Reszka, P., & Cheein, F. A. A. (2020). Moisture content estimation of Pinus radiata and Eucalyptus globulus from reconstructed leaf reflectance in the SWIR region. Biosyst. Eng., 193, 187–205.
toggle visibility
Arevalo-Ramirez, T. A., Castillo, A. H. F., Cabello, P. S. R., & Cheein, F. A. A. (2021). Single bands leaf reflectance prediction based on fuel moisture content for forestry applications. Biosyst. Eng., 202, 79–95.
toggle visibility
Bertossi, L., & Geerts, F. (2020). Data Quality and Explainable AI. ACM J. Data Inf. Qual., 12(2), 11.
toggle visibility
Billi, M., Mascareno, A., Henriquez, P. A., Rodriguez, I., Padilla, F., & Ruz, G. A. (2022). Learning from crises? The long and winding road of the salmon industry in Chiloe Island, Chile. Mar. Pol., 140, 105069.
toggle visibility
Blanco, K., Salcidua, S., Orellana, P., Sauma, T., Leon, T., Lopez-Steinmetz, L. C., et al. (2023). Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimers disease. Alzheimer's Res. Ther., Early Access.
toggle visibility
Cabrera, I., Villalon, J., & Chavez, J. (2017). Blending Communities and Team-Based Learning in a Programming Course. IEEE Trans. Educ., 60(4), 288–295.
toggle visibility
Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W., et al. (2023). Semi-Supervised vs. Supervised Learning for Mental Health Monitoring: A Case Study on Bipolar Disorder. Int. J. Appl. Math. Comput. Sci., 33(3), 419–428.
toggle visibility
Decker, L., Leite, D., Minarini, F., Tisbeni, S. R., & Bonacorsi, D. (2022). Unsupervised Learning and Online Anomaly Detection: An On-Condition Log-Based Maintenance System. Int. J. Embed. Real-Time Commun. Syst., 13(1).
toggle visibility
Dumett, M. A., & Cominetti, R. (2018). On The Stability Of An Adaptive Learning Dynamics In Traffic Games. J. Dyn. Games, 5(4), 265–282.
toggle visibility
Escapil-Inchauspe, P., & Ruz, G. A. (2023). h-Analysis and data-parallel physics-informed neural networks. Sci. Rep., 13(1), 17562.
toggle visibility
Fernandez, C., Valle, C., Saravia, F., & Allende, H. (2012). Behavior analysis of neural network ensemble algorithm on a virtual machine cluster. Neural Comput. Appl., 21(3), 535–542.
toggle visibility
Gaona, J., Hernández, R., Guevara, F., & Bravo, V. (2022). Influence of a Function’s Coefficients and Feedback of the Mathematical Work When Reading a Graph in an Online Assessment System. Int. J. Emerg. Technol. Learn., 17(20), 77–98.
toggle visibility
Gonzalez-Martin, C., Carrasco, M., & Oviedo, G. (2022). Analysis of the Use of Color and Its Emotional Relationship in Visual Creations Based on Experiences during the Context of the COVID-19 Pandemic. Sustainability, 14(20), 12989.
toggle visibility
Gonzalez-Martin, C., Carrasco, M., & Wielandt, T. G. W. (2023). Detection of Emotions in Artworks Using a Convolutional Neural Network Trained on Non-Artistic Images: A Methodology to Reduce the Cross-Depiction Problem. Empir. Stud. Arts, Early Access.
toggle visibility
Guevara, E., Babonneau, F., Homem-de-Mello, T., & Moret, S. (2020). A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty. Appl. Energy, 271, 18 pp.
toggle visibility
Gutierrez-Portela, F., Arteaga-Arteaga, B. H., Almenares-Mendoza, F., Calderon-Benavente, L., Acosta-Mesa, H. G., & Tabares-Soto. R. (2023). Enhancing Intrusion Detection in IoT Communications Through ML Model Generalization With a New Dataset (IDSAI). IEEE Access, 11, 70542–70559.
toggle visibility