|
Pereira, J. (2016). Procedures for the bin packing problem with precedence constraints. Eur. J. Oper. Res., 250(3), 794–806.
Abstract: The bin packing problem with precedence constraints (BPP-P) is a recently proposed variation of the classical bin packing problem (BPP), which corresponds to a basic model featuring many underlying characteristics of several scheduling and assembly line balancing problems. The formulation builds upon the BPP by incorporating precedence constraints among items, which force successor items to be packed into later bins than their predecessors. In this paper we propose a dynamic programming based heuristic, and a modified exact enumeration procedure to solve the problem. These methods make use of several new lower bounds and dominance rules tailored for the problem in hand. The results of a computational experiment show the effectiveness of the proposed methods, which are able to close all of the previous open instances from the benchmark instance set within very reduced running times. (C) 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS). All rights reserved.
|
|
|
Pereira, J., & Alvarez-Miranda, E. (2018). An exact approach for the robust assembly line balancing problem. Omega-Int. J. Manage. Sci., 78, 85–98.
Abstract: This work studies an assembly line balancing problem with uncertainty on the task times. In order to deal with the uncertainty, a robust formulation to handle changes in the operation times is put forward. In order to solve the problem, several lower bounds, dominance rules and an enumeration procedure are proposed. These methods are tested in a computational experiment using different instances derived from the literature and then compared to similar previous approaches. The results of the experiment show that the method is able to solve larger instances in shorter running times. Furthermore, the cost of protecting a solution against uncertainty is also investigated. The results highlight that protecting an assembly line against moderate levels of uncertainty can be achieved at the expense of small quantities of additional resources (stations). (C) 2017 Elsevier Ltd. All rights reserved.
|
|