toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Alejo, L., Atkinson, J., Guzman-Fierro, V., & Roeckel, M. (2018). Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques. Environ. Sci. Pollut. Res., 25(21), 21149–21163.
toggle visibility
Arevalo-Ramirez, T., Villacres, J., Fuentes, A., Reszka, P., & Cheein, F. A. A. (2020). Moisture content estimation of Pinus radiata and Eucalyptus globulus from reconstructed leaf reflectance in the SWIR region. Biosyst. Eng., 193, 187–205.
toggle visibility
Arevalo-Ramirez, T. A., Castillo, A. H. F., Cabello, P. S. R., & Cheein, F. A. A. (2021). Single bands leaf reflectance prediction based on fuel moisture content for forestry applications. Biosyst. Eng., 202, 79–95.
toggle visibility
Bertossi, L., & Geerts, F. (2020). Data Quality and Explainable AI. ACM J. Data Inf. Qual., 12(2), 11.
toggle visibility
Guevara, E., Babonneau, F., Homem-de-Mello, T., & Moret, S. (2020). A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty. Appl. Energy, 271, 18 pp.
toggle visibility
Hughes, S., Moreno, S., Yushimito, W. F., & Huerta-Canepa, G. (2019). Evaluation of machine learning methodologies to predict stop delivery times from GPS data. Transp. Res. Pt. C-Emerg. Technol., 109, 289–304.
toggle visibility
Pham, D. T., & Ruz, G. A. (2009). Unsupervised training of Bayesian networks for data clustering. Proc. R. Soc. A-Math. Phys. Eng. Sci., 465(2109), 2927–2948.
toggle visibility
Wolff, P., Rios, S., Clavijo, D., Grana, M., & Carrasco, M. (2020). Methodologically grounded semantic analysis of large volume of chilean medical literature data applied to the analysis of medical research funding efficiency in Chile. J. Biomed. Semant., 11(1), 10 pp.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print