Campos, J. L., del Rio, A. V., Pedrouso, A., Raux, P., Giustinianovich, E. A., & Mosquera-Corral, A. (2017). Granular biomass floatation: A simple kinetic/stoichiometric explanation. Chem. Eng. J., 311, 63–71.
Abstract: Floatation events are commonly observed in anammox, denitrifying and anaerobic granular systems mostly subjected to overloading conditions. Although several operational strategies have been proposed to avoid floatation of granular biomass, until now, there is no consensus about the conditions responsible for this phenomenon. In the present study, a simple explanation based on kinetic and stoichiometric principles defining the aforementioned processes is provided. The operational zones corresponding to evaluated parameters where risk of floatation exists are defined as a function of substrate concentration in the bulk liquid and the radius of the granule. Moreover, the possible control of biomass floatation by changing the operating temperature was analyzed. Defined operational zones and profiles fit data reported in literature for granular biomass floatation events. From the study the most influencing parameter on floatation occurrence has been identified as the substrate concentration in the bulk media. (C) 2016 Elsevier B.V. All rights reserved.
|
Crutchik, D., Franchi, O., Caminos, L., Jeison, D., Belmonte, M., Pedrouso, A., et al. (2020). Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water, 12(4), 12 pp.
Abstract: Sludge is a by-product of municipal wastewater treatment plants (WWTPs) and its management contributes significantly to the operating costs. Large WWTPs usually have anaerobic sludge digesters to valorize sludge as methane and to reduce its mass. However, the low methane market price opens the possibility for generating other high value-added products from the organic matter in sludge, such as polyhydroxyalkanoates (PHAs). In this work, the economic feasibility of retrofitting two types of WWTPs to convert them into biofactories of crude PHAs was studied. Two cases were analyzed: (a) a large WWTP with anaerobic sludge digestion; and (b) a small WWTP where sludge is only dewatered. In a two-stage PHA-production system (biomass enrichment plus PHAs accumulation), the minimum PHAs cost would be 1.26 and 2.26 US$/kg PHA-crude for the large and small WWTPs, respectively. In a single-stage process, where a fraction of the secondary sludge (25%) is directly used to accumulate PHAs, the production costs would decrease by around 15.9% (small WWTPs) and 19.0% (large WWTPs), since capital costs associated with bioreactors decrease. Sensitivity analysis showed that the PHA/COD (Chemical Oxygen Demand) yield is the most crucial parameter affecting the production costs. The energy, methane, and sludge management prices also have an essential effect on the production costs, and their effect depends on the WWTP's size.
|
Da Silva, C., Astals, S., Peces, M., Campos, J. L., & Guerrero, L. (2018). Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation. Waste Manage., 71, 19–24.
Abstract: Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to > 100 days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B-0) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k <= 0.1 d(-1)) have a minimum testing times of >= 15 days, (ii) moderately biodegradable substrates (0.1 < k < 0.2 d(-1)) have a minimum testing times between 8 and 15 days, and (iii) rapidly biodegradable substrates (k > 0.2 d(-1)) have testing times lower than 7 days. (C) 2017 Elsevier Ltd. All rights reserved.
|