|
Capotondi, A., McGregor, S., McPhaden, M. J., Cravatte, S., Holbrook, N. J., Imada, Y., et al. (2023). Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Environ., 4(11), 754–769.
Abstract: Naturally occurring tropical Pacific variations at timescales of 7-70 years – tropical Pacific decadal variability (TPDV) – describe basin-scale sea surface temperature (SST), sea-level pressure and heat content anomalies. Several mechanisms are proposed to explain TPDV, which can originate through oceanic processes, atmospheric processes or as an El Nino/Southern Oscillation (ENSO) residual. In this Review, we synthesize knowledge of these mechanisms, their characteristics and contribution to TPDV. Oceanic processes include off-equatorial Rossby waves, which mediate oceanic adjustment and contribute to variations in equatorial thermocline depth and SST; variations in the strength of the shallow upper-ocean overturning circulation, which exhibit a large anti-correlation with equatorial Pacific SST at interannual and decadal timescales; and the propagation of salinity-compensated temperature (spiciness) anomalies from the subtropics to the equatorial thermocline. Atmospheric processes include midlatitude internal variability leading to tropical and subtropical wind anomalies, which result in equatorial SST anomalies and feedbacks that enhance persistence; and atmospheric teleconnections from Atlantic and Indian Ocean SST variability, which induce winds conducive to decadal anomalies of the opposite sign in the Pacific. Although uncertain, the tropical adjustment through Rossby wave activity is likely a dominant mechanism. A deeper understanding of the origin and spectral characteristics of TPDV-related winds is a key priority.
|
|
|
Corral, N., Anrique, N., Fernandes, D., Parrado, C., & Caceres, G. (2012). Power, placement and LEC evaluation to install CSP plants in northern Chile. Renew. Sust. Energ. Rev., 16(9), 6678–6685.
Abstract: Chile is expecting a 5.4% growth in energy consumption per year until 2030, requiring new and better solutions for the upward trend of its electricity demand. This state leads to select and study one of the potential alternatives for electricity generation: concentrated solar power (CSP) plants. Such renewable technology found in Chile a very favorable condition. Recent researches indicate Atacama Desert as one of the best regions for solar energy worldwide, having an average radiation higher than in places where CSP plants are currently implemented, e.g. Spain and USA. The aim of this study is to present an analysis of levelized energy cost (LEC) for different power capacities of CSP plants placed in distinct locations in northern Chile. The results showed that CSP plants can be implemented in Atacama Desert with LECs around 19 (sic)US$/kWh when a gas-fired backup and thermal energy storage (TES) systems are fitted. This value increases to approximately 28 (sic)US$/kWh if there is no backup system. (C) 2012 Elsevier Ltd. All rights reserved.
|
|
|
Gazitua, M. C., Morgante, V., Poupin, M. J., Ledger, T., Rodriguez-Valdecantos, G., Herrera, C., et al. (2021). The microbial community from the early-plant colonizer (Baccharis linearis) is required for plant establishment on copper mine tailings. Sci. Rep., 11(1), 10448.
Abstract: Plants must deal with harsh environmental conditions when colonizing abandoned copper mine tailings. We hypothesized that the presence of a native microbial community can improve the colonization of the pioneer plant, Baccharis linearis, in soils from copper mining tailings. Plant growth and microbial community compositions and dynamics were determined in cultivation pots containing material from two abandoned copper mining tailings (Huana and Tambillos) and compared with pots containing fresh tailings or surrounding agricultural soil. Controls without plants or using irradiated microbe-free substrates, were also performed. Results indicated that bacteria (Actinobacteria, Gammaproteobacteria, and Firmicutes groups) and fungi (Glomus genus) are associated with B. linearis and may support plant acclimation, since growth parameters decreased in both irradiated (transiently without microbial community) and fresh tailing substrates (with a significantly different microbial community). Consistently, the composition of the bacterial community from abandoned copper mining tailings was more impacted by plant establishment than by differences in the physicochemical properties of the substrates. Bacteria located at B. linearis rhizoplane were clearly the most distinct bacterial community compared with those of fresh tailings, surrounding soil and non-rhizosphere abandoned tailings substrates. Beta diversity analyses showed that the rhizoplane bacterial community changed mainly through species replacement (turnover) than species loss (nestedness). In contrast, location/geographical conditions were more relevant than interaction with the plants, to explain fungal community differences.
|
|
|
Saavedra, L. M., Saldias, G. S., Broitman, B. R., & Vargas, C. A. (2021). Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications. ICES J. Mar. Sci., 78(1), 323–339.
Abstract: The increasing shellfish aquaculture requires knowledge about nearshore environmental variability to manage sustainably and create climate change adaptation strategies. We used data from mooring time series and in situ sampling to characterize oceanographic and carbonate system variability in three bivalve aquaculture areas located along a latitudinal gradient off the Humboldt Current System. Our results showed pH(T) <8 in most coastal sites and occasionally below 7.5 during austral spring-summer in the lower (-30 degrees S) and central (-37 degrees S) latitudes, related to upwelling. Farmed mussels were exposed to undersaturated (Omega(arag) < 1) and hypoxic (<2 ml l(-1)) waters during warm seasons at -37 degrees S, while in the higher latitude (43 degrees S) undersaturated waters were only detected during colder seasons, associated with freshwater runoff. We suggest that both Argopecten purpuratus farmed at -30 degrees S and Mytilus chilensis farmed at -43 degrees S may enhance their growth during summer due to higher temperatures, lower pCO(2), and oversaturated waters. In contrast, Mytilus galloprovincialis farmed at 37 degrees S grows better during spring-summer, following higher temperatures and high pCO(2). This knowledge is relevant for aquaculture, but it must be improved using high-resolution time series and in situ experimentation with farmed species to aid their adaptation to climate change and ocean acidification.
|
|