Garcia-Huidobro, M. R., Poupin, M. J., Urrutia, C., Rodriguez-Navarro, A. B., Grenier, C., Vivanco, J. F., et al. (2021). An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island. Polar Biol., 44, 1343–1352.
Abstract: Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam's population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.
|
Goles, E., Slapnicar, I., & Lardies, M. A. (2021). Universal Evolutionary Model for Periodical Species. Complexity, 2021, 2976351.
Abstract: Real-world examples of periodical species range from cicadas, whose life cycles are large prime numbers, like 13 or 17, to bamboos, whose periods are large multiples of small primes, like 40 or even 120. The periodicity is caused by interaction of species, be it a predator-prey relationship, symbiosis, commensalism, or competition exclusion principle. We propose a simple mathematical model, which explains and models all those principles, including listed extremal cases. This rather universal, qualitative model is based on the concept of a local fitness function, where a randomly chosen new period is selected if the value of the global fitness function of the species increases. Arithmetically speaking, the different interactions are related to only four principles: given a couple of integer periods either (1) their greatest common divisor is one, (2) one of the periods is prime, (3) both periods are equal, or (4) one period is an integer multiple of the other.
|
Kalahasthi, L., Holguin-Veras, J., & Yushimito, W. F. (2022). A freight origin-destination synthesis model with mode choice. Transp. Res. E-Logist. Transp. Rev., 157, 102595.
Abstract: This paper develops a novel procedure to conduct a Freight Origin-Destination Synthesis (FODS) that jointly estimates the trip distribution, mode choice, and the empty trips by truck and rail that provide the best match to the observed freight traffic counts. Four models are integrated: (1) a gravity model for trip distribution, (2) a binary logit model for mode choice, (3) a Noortman and Van Es' model for truck, and (4) a Noortman and Van Es' model for rail empty trips. The estimation process entails an iterative minimization of a nonconvex objective function, the summation of squared errors of the estimated truck and rail traffic counts with respect to the five model parameters. Of the two methods tested to address the nonconvexity, an interior point method with a set of random starting points (Multi-Start algorithm) outperformed the Ordinary Least Squared (OLS) inference technique. The potential of this methodology is examined using a hypothetical example of developing a nationwide freight demand model for Bangladesh. This research improves the existing FODS techniques that use readily available secondary data such as traffic counts and link costs, allowing transportation planners to evaluate policy outcomes without needing expensive freight data collection. This paper presents the results, model validation, limitations, and future scope for improvements.
|