|
Addison, B. C., Wright, D. J., Nicholson, B. A., Cale, B., Mocnik, T., Huber, D., et al. (2021). TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star. Mon. Not. Roy. Astron. Soc., 502(3), 3704–3722.
Abstract: We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M-P = 0.138 +/- 0.023M(J) (43.9 +/- 7.3 M-circle plus), a radius of R-P = 0.639 +/- 0.013 R-J (7.16 +/- 0.15 R-circle plus), bulk density of 0.65(-0.11)(+0.12) (cgs), and period 18.38818(-0.00084)(+0.00085) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M-* = 1.390 +/- 0.046(Msun), R-* = 1.888 +/- 0.033 R-sun, T-eff = 6075 +/- 90 K, and vsin i = 11.3 +/- 0.5 kms(-1). Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a similar to 71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (similar to 100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
|
|
|
Ahrer, E. M., Alderson, L., Batalha, N. M., Batalha, N. E., Bean, J. L., Beatty, T. G., et al. (2023). Identification of carbon dioxide in an exoplanet atmosphere. Nature, Early Access.
Abstract: Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')(1-3), and thus the formation processes of the primary atmospheres of hot gas giants(4-6). It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets(7-9). Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification(10-12). Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme(13,14). The data used in this study span 3.0-5.5micrometres in wavelength and show a prominent CO2 absorption feature at 4.3micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0micrometres that is not reproduced by these models.
|
|
|
Allen, N. H., Espinoza, N., Jordan, A., Lopez-Morales, M., Apai, D., Rackham, B. V., et al. (2022). ACCESS: Tentative Detection of H2O in the Ground-based Optical Transmission Spectrum of the Low-density Hot Saturn HATS-5b. Astron. J., 164(4), 153.
Abstract: We present a precise ground-based optical transmission spectrum of the hot Saturn HATS-5b (T (eq) = 1025 K), obtained as part of the ACCESS survey with the IMACS multi-object spectrograph mounted on the Magellan Baade Telescope. Our spectra cover the 0.5-0.9 mu m region and are the product of five individual transits observed between 2014 and 2018. We introduce the usage of additional second-order light in our analyses, which allows us to extract an “extra” transit light curve, improving the overall precision of our combined transit spectrum. We find that the favored atmospheric model for this transmission spectrum is a solar-metallicity atmosphere with subsolar C/O, whose features are dominated by H2O and with a depleted abundance of Na and K. If confirmed, this would point to a “clear” atmosphere at the pressure levels probed by transmission spectroscopy for HATS-5b. Our best-fit atmospheric model predicts a rich near-IR spectrum, which makes this exoplanet an excellent target for future follow-up observations with the James Webb Space Telescope, both to confirm this H2O detection and to superbly constrain the atmosphere's parameters.
|
|
|
Almenara, J. M., Bonfils, X., Bryant, E. M., Jordan, A., Hebrard, G., Martioli, E., et al. (2024). TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf. Astron. Astrophys., 683, A166.
Abstract: We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R-* = 0.358 +/- 0.015 R-circle dot, M-* = 0.340 +/- 0.009 M-circle dot). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 +/- 0.03 R-J and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 +/- 0.12) and measured the mass of the planet (0.273 +/- 0.006 M-J). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 M-E) found around mid to late M dwarfs (<0.4 R-circle dot), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 +/- 0.09) with an orbital period of 427 +/- 7 days and a minimum mass of 1.66 +/- 0.26 M-J, but additional data would be needed to confirm this.
|
|
|
Antilen, J., Casassus, S., Cieza, L. A., & Gonzalez-Ruilova, C. (2023). Gas distribution in ODISEA sources from ALMA long-baseline observations in (CO)-C-12(2-1). Mon. Not. Roy. Astron. Soc., 522(2), 2611–2627.
Abstract: The (CO)-C-12 rotational lines in protoplanetary discs are good tracers of the total spatial extension of the gas component, and potentially planet-disc interactions. We present ALMA long baseline observations of the (CO)-C-12(2-1) line of 10 protoplanetary discs from the Ophiuchus DIsc Survey Employing ALMA (ODISEA) project, aiming to set constraints on the gas distribution of these sources. The position angle of the gaseous disc can be inferred for five sources using high-velocity channels, which trace the gas in the inner part of the disc. We compare the high-velocity PAs to the orientations inferred from the continuum, representative of the orientation over similar to 53 to 256 au in these resolved discs. We find a significant difference in orientation for DoAr 44, which is evidence of a tilted inner disc. Eight discs show evidence of gas inside inner dust cavities or gaps, and the disc of ISO-Oph 196 is not detected in (CO)-C-12(2-1), except for the compact signal located inside its dust cavity. Our observations also point out a possible outflow in WLY 2-63.
|
|
|
Astudillo-Defru, N., Cloutier, R., Wang, S. X., Teske, J., Brahm, R., Hellier, C., et al. (2020). A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS. Astron. Astrophys., 636, 13 pp.
Abstract: We report the detection of a transiting super-Earth-sized planet (R = 1.39 +/- 0.09 R-circle plus) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 +/- 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 +/- 0.56 M-circle plus and thus the bulk density to be 1.74(-0.33)(+0.44) times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission's scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization.
|
|
|
Bergmann, C., Jones, M. I., Zhao, J., Mustill, A. J., Brahm, R., Torres, P., et al. (2021). HD 76920 b pinned down: A detailed analysis of the most eccentric planetary system around an evolved star. PUBL. ASTRON. SOC. AUST., 38, e019.
Abstract: We present 63 new multi-site radial velocity (RV) measurements of the K1III giant HD 76920, which was recently reported to host the most eccentric planet known to orbit an evolved star. We focused our observational efforts on the time around the predicted periastron passage and achieved near-continuous phase coverage of the corresponding RV peak. By combining our RV measurements from four different instruments with previously published ones, we confirm the highly eccentric nature of the system and find an even higher eccentricity of , an orbital period of 415.891(-0.039)(+0.043) d, and a minimum mass of 3.13(-0.43)(+0.41) M-J for the planet. The uncertainties in the orbital elements are greatly reduced, especially for the period and eccentricity. We also performed a detailed spectroscopic analysis to derive atmospheric stellar parameters, and thus the fundamental stellar parameters (M-*, R-*, L-*) taking into account the parallax from Gaia DR2, and independently determined the stellar mass and radius using asteroseismology. Intriguingly, at periastron, the planet comes to within 2.4 stellar radii of its host star's surface. However, we find that the planet is not currently experiencing any significant orbital decay and will not be engulfed by the stellar envelope for at least another 50-80 Myr. Finally, while we calculate a relatively high transit probability of 16%, we did not detect a transit in the TESS photometry.
|
|
|
Bergsten, G. J., Pascucci, I., Hardegree-Ullman, K. K., Fernandes, R. B., Christiansen, J. L., & Mulders, G. D. (2023). No Evidence for More Earth-sized Planets in the Habitable Zone of Kepler's M versus FGK Stars. Astron. J., 166(6), 234.
Abstract: Reliable detections of Earth-sized planets in the habitable zone remain elusive in the Kepler sample, even for M dwarfs. The Kepler sample was once thought to contain a considerable number of M-dwarf stars ( T-eff < 4000 K), which hosted enough Earth-sized ([0.5, 1.5] R-circle plus) planets to estimate their occurrence rate (eta(circle plus)) in the habitable zone. However, updated stellar properties from Gaia have shifted many Kepler stars to earlier spectral type classifications, with most stars (and their planets) now measured to be larger and hotter than previously believed. Today, only one partially reliable Earth-sized candidate remains in the optimistic habitable zone, and zero in the conservative zone. Here we performed a new investigation of Kepler's Earth-sized planets orbiting M-dwarf stars, using occurrence rate models with considerations of updated parameters and candidate reliability. Extrapolating our models to low instellations, we found an occurrence rate of eta(circle plus) = 8.58( – 8.22 )(+ 17.94) % for the conservative habitable zone (and 14.22 (- 12.71) (+ 24.96 )% for the optimistic one), consistent with previous works when considering the large uncertainties. Comparing these estimates to those from similarly comprehensive studies of Sun-like stars, we found that the current Kepler sample does not offer evidence to support an increase in eta(circle plus) from FGK to M stars. While the Kepler sample is too sparse to resolve an occurrence trend between early and mid-to-late M dwarfs for Earth-sized planets, studies including larger planets and/or data from the K2 and TESS missions are well suited to this task.
|
|
|
Bergsten, G. J., Pascucci, I., Mulders, G. D., Fernandes, R. B., & Koskinen, T. T. (2022). The Demographics of Kepler's Earths and Super-Earths into the Habitable Zone. Astron. J., 164(5), 190.
Abstract: Understanding the occurrence of Earth-sized planets in the habitable zone of Sun-like stars is essential to the search for Earth analogs. Yet a lack of reliable Kepler detections for such planets has forced many estimates to be derived from the close-in (2 < P-orb < 100 days) population, whose radii may have evolved differently under the effect of atmospheric mass-loss mechanisms. In this work, we compute the intrinsic occurrence rates of close-in super-Earths (similar to 1-2 R-circle plus and sub-Neptunes (similar to 2-3.5 R-circle plus) for FGK stars (0.56-1.63 M-circle dot) as a function of orbital period and find evidence of two regimes: where super-Earths are more abundant at short orbital periods, and where sub-Neptunes are more abundant at longer orbital periods. We fit a parametric model in five equally populated stellar mass bins and find that the orbital period of transition between these two regimes scales with stellar mass, like P-trans proportional to M-*(1.7 +/- 0.2). Ptrans These results suggest a population of former sub-Neptunes contaminating the population of gigayear-old close-in super-Earths, indicative of a population shaped by atmospheric loss. Using our model to constrain the long-period population of intrinsically rocky planets, we estimate an occurrence rate of Gamma(circle plus) = 15(-4)(+6)% for Earth-sized habitable zone planets, and predict that sub-Neptunes may be similar to twice as common as super-Earths in the habitable zone (when normalized over the natural log-orbital period and radius range used). Finally, we discuss our results in the context of future missions searching for habitable zone planets.
|
|
|
Bozhilov, V., Antonova, D., Hobson, M. J., Brahm, R., Jordan, A., Henning, T., et al. (2023). A 2:1 Mean-motion Resonance Super-Jovian Pair Revealed by TESS, FEROS, and HARPS. Astrophys. J. Lett., 946(2), L36.
Abstract: We report the discovery of a super-Jovian 2:1 mean-motion resonance (MMR) pair around the G-type star TIC 279401253, whose dynamical architecture is a prospective benchmark for planet formation and orbital evolution analysis. The system was discovered thanks to a single-transit event recorded by the Transiting Exoplanet Survey Satellite mission, which pointed to a Jupiter-sized companion with poorly constrained orbital parameters. We began ground-based precise radial velocity (RV) monitoring with HARPS and FEROS within the Warm gIaNts with tEss survey to constrain the transiting body's period, mass, and eccentricity. The RV measurements revealed not one but two massive planets with periods of 76.80(-0.06)(+0.06) and 155.3(-0.7)(+0.7) days, respectively. A combined analysis of transit and RV data yields an inner transiting planet with a mass of 6.14(-0.42)(+0.39) M-Jup and a radius of 1.00(-0.04)(+0.04) R-Jup, and an outer planet with a minimum mass of 8.02(-0.18)(+0.18) M-Jup, indicating a massive giant pair. A detailed dynamical analysis of the system reveals that the planets are locked in a strong firstorder, eccentricity-type 2:1 MMR, which makes TIC 279401253 one of the rare examples of truly resonant architectures supporting disk-induced planet migration. The bright host star, V approximate to 11.9 mag, the relatively short orbital period (P-b = 76.80(-0.06)(+0.06) days), and pronounced eccentricity (e = 0.448(-0.029)(+0.029)) make the transiting planet a valuable target for atmospheric investigation with the James Webb Space Telescope and ground-based extremely large telescopes.
|
|
|
Brahm, R., Nielsen, L. D., Wittenmyer, R. A., Wang, S. H., Rodriguez, J. E., Espinoza, N., et al. (2020). TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite. Astron. J., 160(5), 14 pp.
Abstract: We present the discovery of two new 10 day period giant planets from the Transiting Exoplanet Survey Satellite mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481.b and TOI-892.b have similar radii (0.99.+/-.0.01 R-J and 1.07.+/-.0.02 R-J, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses (1.53.+/-.0.03 MJ versus 0.95.+/-.0.07 MJ, respectively). Both planets orbit metal-rich stars ([Fe H] = + 0.26. 0.05 dex and [Fe H] = +0.24. 0.05 for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a M*=.1.14.+/-.0.02 M., R*=.1.66.+/-.0.02 R. G-type star (T-eff = 5735 +/- 72 K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892 on the other hand, is a F-type dwarf star (T-eff = 6261 +/- 80 K), which has a mass of M*=.1.28.+/-.0.03 M-circle dot and a radius of R*=.1.39.+/-.0.02 R-circle dot. TOI-481.b and TOI-892.b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
|
|
|
Carleo, I., Malavolta, L., Desidera, S., Nardiello, D., Wang, S., Turrini, D., et al. (2024). The GAPS programme at TNG. Astron. Astrophys., 682, A135.
Abstract: Context. Different theories have been developed to explain the origins and properties of close-in giant planets, but none of them alone can explain all of the properties of the warm Jupiters (WJs, Porb = 10-200 days). One of the most intriguing characteristics of WJs is that they have a wide range of orbital eccentricities, challenging our understanding of their formation and evolution. Aims. The investigation of these systems is crucial in order to put constraints on formation and evolution theories. TESS is providing a significant sample of transiting WJs around stars bright enough to allow spectroscopic follow-up studies. Methods. We carried out a radial velocity (RV) follow-up study of the TESS candidate TOI-4515 b with the high-resolution spectrograph HARPS-N in the context of the GAPS project, the aim of which is to characterize young giant planets, and the TRES and FEROS spectrographs. We then performed a joint analysis of the HARPS-N, TRES, FEROS, and TESS data in order to fully characterize this planetary system. Results. We find that TOI-4515 b orbits a 1.2 Gyr-old G-star, has an orbital period of Pb = 15.266446 +/- 0.000013 days, a mass of Mb = 2.01 +/- 0.05 MJ, and a radius of Rb = 1.09 +/- 0.04 RJ. We also find an eccentricity of e = 0.46 +/- 0.01, placing this planet among the WJs with highly eccentric orbits. As no additional companion has been detected, this high eccentricity might be the consequence of past violent scattering events.
|
|
|
Carone, L., Molliere, P., Zhou, Y. F., Bouwman, J., Yan, F., Baeyens, R., et al. (2021). Indications for very high metallicity and absence of methane in the eccentric exo-Saturn WASP-117b. Astron. Astrophys., 646, A168.
Abstract: Aims. We investigate the atmospheric composition of the long-period (P-orb = 10 days) eccentric exo-Saturn WASP-117b. WASP-117b could be similar in atmospheric temperature and chemistry to WASP-107b. In mass and radius, WASP-117b is similar to WASP-39b, which allows a comparative study of these planets.Methods. We analyzed a near-infrared transmission spectrum of WASP-117b taken with the Hubble Space Telescope (HST) WFC3 G141, which was reduced with two independent pipelines. High-resolution measurements were taken with VLT/ESPRESSO in the optical.Results. We report the robust (3 sigma) detection of a water spectral feature. In a 1D atmosphere model with isothermal temperature, uniform cloud deck, and equilibrium chemistry, the Bayesian evidence of a retrieval analysis of the transmission spectrum indicates a preference for a high atmospheric metallicity
[Fe/H] = 2.58(-0.37)(+0.26)
[Fe/H]=2.58-0.37+0.26 and clear skies. The data are also consistent with a lower metallicity composition [Fe/H] < 1.75 and a cloud deck between 10(-2.2) and 10(-5.1) bar, but with weaker Bayesian preference. We retrieve a low CH4 abundance of <10(-4) volume fraction within 1 sigma and <2 x 10(-1) volume fraction within 3<sigma>. We cannot constrain the equilibrium temperature between theoretically imposed limits of 700 and 1000 K. Further observations are needed to confirm quenching of CH4 with K-zz >= 10(8) cm(2) s(-1). We report indications of Na and K in the VLT/ESPRESSO high-resolution spectrum with substantial Bayesian evidence in combination with HST data.
|
|
|
Casassus, S., & Carcamo, M. (2022). Variable structure in the PDS 70 disc and uncertainties in radio-interferometric image restoration. Mon. Not. Roy. Astron. Soc., 513(4), 5790–5798.
Abstract: The compact mm-wavelength signal in the central cavity of the PDS 70 disc, revealed by deep ALMA observations, is aligned with unresolved H alpha emission, and is thought to stem from a circumplanetary disc (CPD) around PDS 70c. We revisit the available ALMA data on PDS 70c with alternative imaging strategies, and with special attention to uncertainties and to the impact of the so-called 'JvM correction', which is thought to improve the dynamic range of restored images. We also propose a procedure for the alignment and joint imaging of multi-epoch visibility data. We find that the JvM correction exaggerates the peak signal-to-noise of the data, by up to a factor of 10. In the case of PDS 70, we recover the detection of PDS 70c from the 2019 July data, but only at 8 sigma. However, its non-detection in 2017 Dec. suggests that PDS 70c is variable by at least 42 per cent +/- 13 per cent over a 1.75 yr time-span, so similar to models of the H alpha variability. We also pick up fine structure in the inner disc, such that its peak is offset by similar to 0 ''.04 from the disc centre. The inner disc is variable too, which we tentatively ascribe to Keplerian rotation as well as intrinsic morphological changes.
|
|
|
Casassus, S., Christiaens, V., Carcamo, M., Perez, S., Weber, P., Ercolano, B., et al. (2021). A dusty filament and turbulent CO spirals in HD 135344B-SAO 206462. Mon. Not. Roy. Astron. Soc., 507(3), 3789–3809.
Abstract: Planet-disc interactions build up local pressure maxima that may halt the radial drift of protoplanetary dust, and pile it up in rings and crescents. ALMA observations of the HD 135344B disc revealed two rings in the thermal continuum stemming from similar to mm-sized dust. At higher frequencies the inner ring is brighter relative to the outer ring, which is also shaped as a crescent rather than a full ring. In near-IR scattered light images, the disc is modulated by a two-armed grand-design spiral originating inside the ALMA inner ring. Such structures may be induced by a massive companion evacuating the central cavity, and by a giant planet in the gap separating both rings, that channels the accretion of small dust and gas through its filamentary wakes while stopping the larger dust from crossing the gap. Here we present ALMA observations in the J = (2 – 1) CO isotopologue lines and in the adjacent continuum, with up to 12 km baselines. Angular resolutions of similar to 0 ''.03 reveal the tentative detection of a filament connecting both rings, and which coincides with a local discontinuity in the pitch angle of the IR spiral, proposed previously as the location of the protoplanet driving this spiral. Line diagnostics suggests that turbulence, or superposed velocity components, is particularly strong in the spirals. The (CO)-C-12(2-1) 3D rotation curve points at stellocentric accretion at radii within the inner dust ring, with a radial velocity of up to similar to 5 per cent +/- 0.5 per cent Keplerian, which corresponds to an excessively large accretion rate of similar to 2 x 10(-6) M circle dot yr(-1) if all of the CO layer follows the (CO)-C-12(2-1) kinematics. This suggests that only the surface layers of the disc are undergoing accretion, and that the line broadening is due to superposed laminar flows.
|
|
|
Christie, D. A., E.K.H., Innes, H., Noti, P. A., Charnay, B., Fauchez, T. J., et al. (2022). CAMEMBERT: A Mini-Neptunes General Circulation Model Intercomparison, Protocol Version 1.0.A CUISINES Model Intercomparison Project. Planet. Sci., 3(11), 261.
Abstract: With an increased focus on the observing and modeling of mini-Neptunes, there comes a need to better understand the tools we use to model their atmospheres. In this Paper, we present the protocol for the Comparing Atmospheric Models of Extrasolar Mini-Neptunes Building and Envisioning Retrievals and Transits, CAMEMBERT, project, an intercomparison of general circulation models (GCMs) used by the exoplanetary science community to simulate the atmospheres of mini-Neptunes. We focus on two targets well studied both observationally and theoretically with planned JWST cycle 1 observations: the warm GJ 1214b and the cooler K2-18b. For each target, we consider a temperature-forced case, a clear sky dual-gray radiative transfer case, and a clear sky multiband radiative transfer case, covering a range of complexities and configurations where we know differences exist between GCMs in the literature. This Paper presents all the details necessary to participate in the intercomparison, with the intention of presenting the results in future papers. Currently, there are eight GCMs participating (ExoCAM, Exo-FMS, FMS PCM, Generic PCM, MITgcm, RM-GCM, THOR, and the Unified Model), and membership in the project remains open. Those interested in participating are invited to contact the authors.
|
|
|
Clark, J. T., Addison, B. C., Okumura, J., Vach, S., Errico, A., Heitzmann, A., et al. (2023). Spinning up a Daze: TESS Uncovers a Hot Jupiter Orbiting the Rapid Rotator TOI-778. Astron. J., 165(5), 207.
Abstract: NASA's Transiting Exoplanet Survey Satellite (TESS) mission has been uncovering a growing number of exoplanets orbiting nearby, bright stars. Most exoplanets that have been discovered by TESS orbit narrow-line, slow-rotating stars, facilitating the confirmation and mass determination of these worlds. We present the discovery of a hot Jupiter orbiting a rapidly rotating (v sin (i) = 35.1 +/- 1.0 km s(-1) early F3V-dwarf, HD 115447 (TOI-778). The transit signal taken from Sectors 10 and 37 of TESS's initial detection of the exoplanet is combined with follow-up ground-based photometry and velocity measurements taken from MINERVA-Australis, TRES, CORALIE, and CHIRON to confirm and characterize TOI-778 b. A joint analysis of the light curves and the radial velocity measurements yields a mass, a radius, and an orbital period for TOI-778 b of 2.76(-0.23)(+0.24) M-J, 1.370 +/- 0.043 R-J, and similar to 4.63 days, respectively. The planet orbits a bright (V = 9.1 mag) F3-dwarf with M = 1.40 +/- 0.05 M-circle dot, R = 1.70 +/- 0.05 R-circle dot, and log g = 4.05 +/- 0.17. We observed a spectroscopic transit of TOI-778 b, which allowed us to derive a sky-projected spin-orbit angle of 18 degrees +/- 11 degrees, consistent with an aligned planetary system. This discovery demonstrates the capability of smaller-aperture telescopes such as MINERVA-Australis to detect the radial velocity signals produced by planets orbiting broad-line, rapidly rotating stars.
|
|
|
Cont, D., Yan, F., Reiners, A., Nortmann, L., Molaverdikhani, K., Palle, E., et al. (2022). Silicon in the dayside atmospheres of two ultra-hot Jupiters. Astron. Astrophys., 657, L2.
Abstract: Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b /MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8 sigma and 5.4 sigma, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.
|
|
|
Dempsey, A. M., Munoz, D. J., & Lithwick, Y. (2021). Outward Migration of Super-Jupiters. Astrophys. J. Lett., 918(2), L36.
Abstract: Recent simulations show that giant planets of about 1 M (J) migrate inward at a rate that differs from the type II prediction. Here we show that at higher masses, planets migrate outward. Our result differs from previous ones because of our longer simulation times, lower viscosity, and boundary conditions that allow the disk to reach a viscous steady state. We show that, for planets on circular orbits, the transition from inward to outward migration coincides with the known transition from circular to eccentric disks that occurs for planets more massive than a few Jupiters. In an eccentric disk, the torque on the outer disk weakens due to two effects: the planet launches weaker waves, and those waves travel further before damping. As a result, the torque on the inner disk dominates, and the planet pushes itself outward. Our results suggest that the many super-Jupiters observed by direct imaging at large distances from the star may have gotten there by outward migration.
|
|
|
Dong, J. Y., Huang, C. X., Dawson, R. I., Foreman-Mackey, D., Collins, K. A., Quinn, S. N., et al. (2021). Warm Jupiters in TESS Full-frame Images: A Catalog and Observed Eccentricity Distribution for Year 1. Astrophys. J. Suppl. Ser., 255(1), 6.
Abstract: Warm Jupiters-defined here as planets larger than 6 Earth radii with orbital periods of 8-200 days-are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in situ, undergo disk or high-eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters' properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the Transiting Exoplanet Survey Satellite (TESS) survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the full-frame images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS objects of interest by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations, and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
|
|