|
Addison, B. C., Wright, D. J., Nicholson, B. A., Cale, B., Mocnik, T., Huber, D., et al. (2021). TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star. Mon. Not. Roy. Astron. Soc., 502(3), 3704–3722.
Abstract: We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M-P = 0.138 +/- 0.023M(J) (43.9 +/- 7.3 M-circle plus), a radius of R-P = 0.639 +/- 0.013 R-J (7.16 +/- 0.15 R-circle plus), bulk density of 0.65(-0.11)(+0.12) (cgs), and period 18.38818(-0.00084)(+0.00085) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M-* = 1.390 +/- 0.046(Msun), R-* = 1.888 +/- 0.033 R-sun, T-eff = 6075 +/- 90 K, and vsin i = 11.3 +/- 0.5 kms(-1). Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a similar to 71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (similar to 100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
|
|
|
Astudillo-Defru, N., Cloutier, R., Wang, S. X., Teske, J., Brahm, R., Hellier, C., et al. (2020). A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS. Astron. Astrophys., 636, 13 pp.
Abstract: We report the detection of a transiting super-Earth-sized planet (R = 1.39 +/- 0.09 R-circle plus) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 +/- 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 +/- 0.56 M-circle plus and thus the bulk density to be 1.74(-0.33)(+0.44) times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission's scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization.
|
|
|
Bergmann, C., Jones, M. I., Zhao, J., Mustill, A. J., Brahm, R., Torres, P., et al. (2021). HD 76920 b pinned down: A detailed analysis of the most eccentric planetary system around an evolved star. PUBL. ASTRON. SOC. AUST., 38, e019.
Abstract: We present 63 new multi-site radial velocity (RV) measurements of the K1III giant HD 76920, which was recently reported to host the most eccentric planet known to orbit an evolved star. We focused our observational efforts on the time around the predicted periastron passage and achieved near-continuous phase coverage of the corresponding RV peak. By combining our RV measurements from four different instruments with previously published ones, we confirm the highly eccentric nature of the system and find an even higher eccentricity of , an orbital period of 415.891(-0.039)(+0.043) d, and a minimum mass of 3.13(-0.43)(+0.41) M-J for the planet. The uncertainties in the orbital elements are greatly reduced, especially for the period and eccentricity. We also performed a detailed spectroscopic analysis to derive atmospheric stellar parameters, and thus the fundamental stellar parameters (M-*, R-*, L-*) taking into account the parallax from Gaia DR2, and independently determined the stellar mass and radius using asteroseismology. Intriguingly, at periastron, the planet comes to within 2.4 stellar radii of its host star's surface. However, we find that the planet is not currently experiencing any significant orbital decay and will not be engulfed by the stellar envelope for at least another 50-80 Myr. Finally, while we calculate a relatively high transit probability of 16%, we did not detect a transit in the TESS photometry.
|
|
|
Brahm, R., Nielsen, L. D., Wittenmyer, R. A., Wang, S. H., Rodriguez, J. E., Espinoza, N., et al. (2020). TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite. Astron. J., 160(5), 14 pp.
Abstract: We present the discovery of two new 10 day period giant planets from the Transiting Exoplanet Survey Satellite mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481.b and TOI-892.b have similar radii (0.99.+/-.0.01 R-J and 1.07.+/-.0.02 R-J, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses (1.53.+/-.0.03 MJ versus 0.95.+/-.0.07 MJ, respectively). Both planets orbit metal-rich stars ([Fe H] = + 0.26. 0.05 dex and [Fe H] = +0.24. 0.05 for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a M*=.1.14.+/-.0.02 M., R*=.1.66.+/-.0.02 R. G-type star (T-eff = 5735 +/- 72 K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892 on the other hand, is a F-type dwarf star (T-eff = 6261 +/- 80 K), which has a mass of M*=.1.28.+/-.0.03 M-circle dot and a radius of R*=.1.39.+/-.0.02 R-circle dot. TOI-481.b and TOI-892.b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
|
|
|
Carone, L., Molliere, P., Zhou, Y. F., Bouwman, J., Yan, F., Baeyens, R., et al. (2021). Indications for very high metallicity and absence of methane in the eccentric exo-Saturn WASP-117b. Astron. Astrophys., 646, A168.
Abstract: Aims. We investigate the atmospheric composition of the long-period (P-orb = 10 days) eccentric exo-Saturn WASP-117b. WASP-117b could be similar in atmospheric temperature and chemistry to WASP-107b. In mass and radius, WASP-117b is similar to WASP-39b, which allows a comparative study of these planets.Methods. We analyzed a near-infrared transmission spectrum of WASP-117b taken with the Hubble Space Telescope (HST) WFC3 G141, which was reduced with two independent pipelines. High-resolution measurements were taken with VLT/ESPRESSO in the optical.Results. We report the robust (3 sigma) detection of a water spectral feature. In a 1D atmosphere model with isothermal temperature, uniform cloud deck, and equilibrium chemistry, the Bayesian evidence of a retrieval analysis of the transmission spectrum indicates a preference for a high atmospheric metallicity
[Fe/H] = 2.58(-0.37)(+0.26)
[Fe/H]=2.58-0.37+0.26 and clear skies. The data are also consistent with a lower metallicity composition [Fe/H] < 1.75 and a cloud deck between 10(-2.2) and 10(-5.1) bar, but with weaker Bayesian preference. We retrieve a low CH4 abundance of <10(-4) volume fraction within 1 sigma and <2 x 10(-1) volume fraction within 3<sigma>. We cannot constrain the equilibrium temperature between theoretically imposed limits of 700 and 1000 K. Further observations are needed to confirm quenching of CH4 with K-zz >= 10(8) cm(2) s(-1). We report indications of Na and K in the VLT/ESPRESSO high-resolution spectrum with substantial Bayesian evidence in combination with HST data.
|
|
|
Casassus, S., & Carcamo, M. (2022). Variable structure in the PDS 70 disc and uncertainties in radio-interferometric image restoration. Mon. Not. Roy. Astron. Soc., 513(4), 5790–5798.
Abstract: The compact mm-wavelength signal in the central cavity of the PDS 70 disc, revealed by deep ALMA observations, is aligned with unresolved H alpha emission, and is thought to stem from a circumplanetary disc (CPD) around PDS 70c. We revisit the available ALMA data on PDS 70c with alternative imaging strategies, and with special attention to uncertainties and to the impact of the so-called 'JvM correction', which is thought to improve the dynamic range of restored images. We also propose a procedure for the alignment and joint imaging of multi-epoch visibility data. We find that the JvM correction exaggerates the peak signal-to-noise of the data, by up to a factor of 10. In the case of PDS 70, we recover the detection of PDS 70c from the 2019 July data, but only at 8 sigma. However, its non-detection in 2017 Dec. suggests that PDS 70c is variable by at least 42 per cent +/- 13 per cent over a 1.75 yr time-span, so similar to models of the H alpha variability. We also pick up fine structure in the inner disc, such that its peak is offset by similar to 0 ''.04 from the disc centre. The inner disc is variable too, which we tentatively ascribe to Keplerian rotation as well as intrinsic morphological changes.
|
|
|
Casassus, S., Christiaens, V., Carcamo, M., Perez, S., Weber, P., Ercolano, B., et al. (2021). A dusty filament and turbulent CO spirals in HD 135344B-SAO 206462. Mon. Not. Roy. Astron. Soc., 507(3), 3789–3809.
Abstract: Planet-disc interactions build up local pressure maxima that may halt the radial drift of protoplanetary dust, and pile it up in rings and crescents. ALMA observations of the HD 135344B disc revealed two rings in the thermal continuum stemming from similar to mm-sized dust. At higher frequencies the inner ring is brighter relative to the outer ring, which is also shaped as a crescent rather than a full ring. In near-IR scattered light images, the disc is modulated by a two-armed grand-design spiral originating inside the ALMA inner ring. Such structures may be induced by a massive companion evacuating the central cavity, and by a giant planet in the gap separating both rings, that channels the accretion of small dust and gas through its filamentary wakes while stopping the larger dust from crossing the gap. Here we present ALMA observations in the J = (2 – 1) CO isotopologue lines and in the adjacent continuum, with up to 12 km baselines. Angular resolutions of similar to 0 ''.03 reveal the tentative detection of a filament connecting both rings, and which coincides with a local discontinuity in the pitch angle of the IR spiral, proposed previously as the location of the protoplanet driving this spiral. Line diagnostics suggests that turbulence, or superposed velocity components, is particularly strong in the spirals. The (CO)-C-12(2-1) 3D rotation curve points at stellocentric accretion at radii within the inner dust ring, with a radial velocity of up to similar to 5 per cent +/- 0.5 per cent Keplerian, which corresponds to an excessively large accretion rate of similar to 2 x 10(-6) M circle dot yr(-1) if all of the CO layer follows the (CO)-C-12(2-1) kinematics. This suggests that only the surface layers of the disc are undergoing accretion, and that the line broadening is due to superposed laminar flows.
|
|
|
Cont, D., Yan, F., Reiners, A., Nortmann, L., Molaverdikhani, K., Palle, E., et al. (2022). Silicon in the dayside atmospheres of two ultra-hot Jupiters. Astron. Astrophys., 657, L2.
Abstract: Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b /MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8 sigma and 5.4 sigma, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.
|
|
|
Dempsey, A. M., Munoz, D. J., & Lithwick, Y. (2021). Outward Migration of Super-Jupiters. Astrophys. J. Lett., 918(2), L36.
Abstract: Recent simulations show that giant planets of about 1 M (J) migrate inward at a rate that differs from the type II prediction. Here we show that at higher masses, planets migrate outward. Our result differs from previous ones because of our longer simulation times, lower viscosity, and boundary conditions that allow the disk to reach a viscous steady state. We show that, for planets on circular orbits, the transition from inward to outward migration coincides with the known transition from circular to eccentric disks that occurs for planets more massive than a few Jupiters. In an eccentric disk, the torque on the outer disk weakens due to two effects: the planet launches weaker waves, and those waves travel further before damping. As a result, the torque on the inner disk dominates, and the planet pushes itself outward. Our results suggest that the many super-Jupiters observed by direct imaging at large distances from the star may have gotten there by outward migration.
|
|
|
Dong, J. Y., Huang, C. X., Dawson, R. I., Foreman-Mackey, D., Collins, K. A., Quinn, S. N., et al. (2021). Warm Jupiters in TESS Full-frame Images: A Catalog and Observed Eccentricity Distribution for Year 1. Astrophys. J. Suppl. Ser., 255(1), 6.
Abstract: Warm Jupiters-defined here as planets larger than 6 Earth radii with orbital periods of 8-200 days-are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in situ, undergo disk or high-eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters' properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the Transiting Exoplanet Survey Satellite (TESS) survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the full-frame images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS objects of interest by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations, and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
|
|
|
Dorval, P., Talens, G. J. J., Otten, G. P. P. L., Brahm, R., Jordan, A., Torres, P., et al. (2020). MASCARA-4 b/bRing-1 b: A retrograde hot Jupiter around a bright A-type star. Astron. Astrophys., 635, 10 pp.
Abstract: Context. The Multi-site All-Sky CAmeRA (MASCARA) and bRing are both photometric ground-based instruments with multiple stations that rely on interline charge-coupled devices with wide-field lenses to monitor bright stars in the local sky for variability. MASCARA has already discovered several planets in the northern sky, which are among the brightest known transiting hot Jupiter systems. Aims. In this paper, we aim to characterize a transiting planetary candidate in the southern skies found in the combined MASCARA and bRing data sets of HD 85628, an A7V star of V = 8.2 mag at a distance 172 pc, to establish its planetary nature. Methods. The candidate was originally detected in data obtained jointly with the MASCARA and bRing instruments using a Box Least-Square search for transit events. Further photometry was taken by the 0.7 m Chilean-Hungarian Automated Telescope (CHAT), and radial velocity measurements with the Fiber Dual Echelle Optical Spectrograph on the European Southern Observatory 1.0 m Telescope. High-resolution spectra during a transit were taken with the CTIO high-resolution spectrometer (CHIRON) on the Small and Moderate Aperture Research Telescope System 1.5 m telescope to target the Doppler shadow of the candidate. Results. We confirm the existence of a hot Jupiter transiting the bright A7V star HD 85628, which we co-designate as MASCARA-4b and bRing-1b. It is in an orbit of 2.824 days, with an estimated planet radius of 1.53(-0.04)(+0.07) R-Jup and an estimated planet mass of 3.1 +/- 0.9 M-Jup, putting it well within the planetary regime. The CHAT observations show a partial transit, reducing the probability that the transit was around a faint background star. The CHIRON observations show a clear Doppler shadow, implying that the transiting object is in a retrograde orbit with |lambda| = 244.9(-3.6)(+2.7)degrees. The planet orbits at a distance of 0.047 +/- 0.004 AU from the star and has a zero-albedo equilibrium temperature of 2100 +/- 100 K. In addition, we find that HD 85628 has a previously unreported stellar companion star in the Gaia DR2 data demonstrating common proper motion and parallax at 4.3 '' separation (projected separation similar to 740 AU), and with absolute magnitude consistent with being a K/M dwarf. Conclusions. MASCARA-4 b/bRing-1 b is the brightest transiting hot Jupiter known to date in a retrograde orbit. It further confirms that planets in near-polar and retrograde orbits are more common around early-type stars. Due to its high apparent brightness and short orbital period, the system is particularly well suited for further atmospheric characterization.
|
|
|
Eberhardt, J., Trifonov, T., Kurster, M., Stock, S., Henning, T., Wollbold, A., et al. (2022). Dynamical Architecture of the HD 107148 Planetary System. Astron. J., 163(5), 198.
Abstract: We present an independent Doppler validation and dynamical orbital analysis of the two-planet system HD 107148, which was recently announced in Rosenthal et al. Our detailed analyses are based on literature HIRES data and newly obtained HARPS and CARMENES radial-velocity (RV) measurements as part of our survey in search for additional planets around single-planet systems. We perform a periodogram analysis of the available HIRES and HARPS precise RVs and stellar activity indicators. We do not find any apparent correlation between the RV measurements and the stellar activity indicators, thus linking the two strong periodicities to a moderately compact multiplanet system. We carry out orbital fitting analysis by testing various one- and two-planet orbital configurations and studying the posterior probability distribution of the fitted parameters. Our results solidify the existence of a Saturn-mass planet (HD 107148b, discovered first) with a period of P (b) similar to 77.2 days and a second, eccentric (e (c) similar to 0.4), Neptune-mass exoplanet (HD 107148c) with an orbital period of P (c) similar to 18.3 days. Finally, we investigate the two-planet system's long-term stability and overall orbital dynamics with the posterior distribution of our preferred orbital configuration. Our N-body stability simulations show that the system is long-term stable and exhibits large secular osculations in eccentricity but in no particular mean motion resonance configuration. The HD 107148 system, consisting of a solar-type main-sequence star with two giant planets in a rare configuration, features a common proper-motion white dwarf companion and is therefore a valuable target for understanding the formation and evolution of planetary systems.
|
|
|
Espinoza, N., Brahm, R., Henning, T., Jordan, A., Dorn, C., Rojas, F., et al. (2020). HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V=7.9) star unveiled by TESS. Mon. Not. Roy. Astron. Soc., 491(2), 2982–2999.
Abstract: We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition – similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
|
|
|
Grieves, N., Nielsen, L. D., Vines, J. I., Bryant, E. M., Gill, S., Bouchy, F., et al. (2021). NGTS-13b: a hot 4.8 Jupiter-mass planet transiting a subgiant star. Astron. Astrophys., 647, A180.
Abstract: We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with logg(*) = 4.04 +/- 0.05, T-eff = 5819 +/- 73 K, M-* = 1.30(-0.18)(+0.11) M-circle dot, and R-* = 1.79 +/- 0.06 R-circle dot. The NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities, we determine NGTS-13b to have a radius of R-P = 1.142 +/- 0.046 R-Jup, a mass of M-P = 4.84 +/- 0.44 M-Jup, and an eccentricity of e = 0.086 +/- 0.034. Previous studies have suggested that similar to 4 M-Jup may be the border separating two formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 M-Jup, making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity of NGTS-13, [Fe/H] = 0.25 +/- 0.17, does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars.
|
|
|
Hartman, J. D., Jordan, A., Bayliss, D., Bakos, G. A., Bento, J., Bhatti, W., et al. (2020). HATS-47b, HATS-48Ab, HATS-49b, and HATS-72b: Four Warm Giant Planets Transiting K Dwarfs. Astron. J., 159(4), 23 pp.
Abstract: We report the discovery of four transiting giant planets around K dwarfs. The planets HATS-47b, HATS-48Ab, HATS49b, and HATS-72b have masses of 0.369+ 0.0210.031MJ, 0.243+ 0.0300.022 MJ, 0.353+ 0.0270.038 MJ, and 0.1254. 0.0039 MJ, respectively, and radii of 1.117. 0.014 RJ, 0.800. 0.015 RJ, 0.765. 0.013 RJ, and 0.7224. 0.0032 RJ, respectively. The planets orbit close to their host stars with orbital periods of 3.9228 days, 3.1317 days, 4.1480 days, and 7.3279 days, respectively. The hosts are main-sequence K dwarfs with masses of 0.674+ 0.0120.016.M, 0.7279. 0.0066.M, 0.7133. 0.0075.M, and 0.7311. 0.0028, and with V-band magnitudes of V = 14.829. 0.010, 14.35. 0.11, 14.998. 0.040 and 12.469. 0.010. The super-Neptune HATS-72b (a.k.a. WASP-191b and TOI 294.01) was independently identified as a transiting planet candidate by the HATSouth, WASP, and TESS surveys, and we present a combined analysis of all of the data gathered by each of these projects (and their follow-up programs). An exceptionally precise mass is measured for HATS-72b thanks to high-precision radial velocity (RV) measurements obtained with VLT/ESPRESSO, FEROS, HARPS, and Magellan/PFS. We also incorporate TESS observations of the warm Saturn-hosting systems HATS-47 (a.k.a. TOI.1073.01), HATS-48A, and HATS-49. HATS-47 was independently identified as a candidate by the TESS team, while the other two systems were not previously identified from the TESS data. The RV orbital variations are measured for these systems using Magellan/PFS. HATS-48A has a resolved 5.. 4 neighbor in Gaia.DR2, which is a common-proper-motion binary star companion to HATS-48A with a mass of 0.22.M and a current projected physical separation of similar to 1400 au.
|
|
|
Hobson, M. J., Brahm, R., Jordan, A.., Espinoza, N., Kossakowski, D., Henning, T., et al. (2021). A Transiting Warm Giant Planet around the Young Active Star TOI-201. Astron. J., 161(5), 235.
Abstract: We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in Transiting Exoplanet Survey Satellite photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using groundbased photometry from Next Generation Transit Survey and radial velocities from FEROS, HARPS, CORALIE, and MINERVA-Australis. TOI-201 b orbits a young (0.87(-0.49)(+0.46)) and bright (V = 9.07 mag) F-type star with a 52.9781 day period. The planet has a mass of 0.42(-0.03)(+0.05) M-J, a radius of 1.008(-0.015)(+0.012) R-J, and an orbital eccentricity of 0.28(-0.09)(+0.06); it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b are important for constraining formation and evolution theories for giant planets.
|
|
|
Jackson, J. M., Dawson, R. I., Shannon, A., & Petrovich, C. (2021). Observable Predictions from Perturber-coupled High-eccentricity Tidal Migration of Warm Jupiters. Astron. J., 161(4), 200.
Abstract: The origin of warm Jupiters (gas giant planets with periods between 10 and 200 days) is an open question in exoplanet formation and evolution. We investigate a particular migration theory in which a warm Jupiter is coupled to a perturbing companion planet that excites secular eccentricity oscillations in the warm Jupiter, leading to periodic close stellar passages that can tidally shrink and circularize its orbit. If such companions exist in warm Jupiter systems, they are likely to be massive and close-in, making them potentially detectable. We generate a set of warm Jupiter-perturber populations capable of engaging in high-eccentricity tidal migration and calculate the detectability of the perturbers through a variety of observational metrics. We show that a small percentage of these perturbers should be detectable in the Kepler light curves, but most should be detectable with precise radial velocity measurements over a 3 month baseline and Gaia astrometry. We find these results to be robust to the assumptions made for the perturber parameter distributions. If a high-precision radial velocity search for companions to warm Jupiters does not find evidence of a significant number of massive companions over a 3 month baseline, it will suggest that perturber-coupled high-eccentricity migration is not the predominant delivery method for warm Jupiters.
|
|
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
|
|
|
Jones, M. I., Wittenmyer, R., Aguilera-Gomez, C., Soto, M. G., Torres, P., Trifonov, T., et al. (2021). Four Jovian planets around low-luminosity giant stars observed by the EXPRESS and PPPS. Astron. Astrophys., 646, A131.
Abstract: We report the discovery of planetary companions orbiting four low-luminosity giant stars with M-star between 1.04 and 1.39 M-circle dot. All four host stars have been independently observed by the EXoPlanets aRound Evolved StarS (EXPRESS) program and the Pan-Pacific Planet Search (PPPS). The companion signals were revealed by multi-epoch precision radial velocities obtained in nearly a decade. The planetary companions exhibit orbital periods between similar to 1.2 and 7.1 yr, minimum masses of m(p)sin i similar to 1.8-3.7 M-J, and eccentricities between 0.08 and 0.42. With these four new systems, we have detected planetary companions to 11 out of the 37 giant stars that are common targets in the EXPRESS and PPPS. After excluding four compact binaries from the common sample, we obtained a fraction of giant planets (m(p) greater than or similar to 1- 2 M-J) orbiting within 5 AU from their parent star of f = 33.3(-7.1)(+9.0)%. This fraction is slightly higher than but consistent at the 1 sigma level with previous results obtained by different radial velocity surveys. Finally, this value is substantially higher than the fraction predicted by planet formation models of gas giants around stars more massive than the Sun.
|
|
|
Jordan, A., Bakos, G. A., Bayliss, D., Bento, J., Bhatti, W., Brahm, R., et al. (2020). HATS-37Ab and HATS-38b: Two Transiting Hot Neptunes in the Desert*. Astron. J., 160(5), 14 pp.
Abstract: We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099 +/- 0.042 MJ (31.5.+/-.13.4M(circle dot)) and a radius of 0.606 +/- 0.016 R-J, and is on a P = 4.3315 day orbit around a V = 12.266 +/- 0.030 mag, 0.843(-0.012)(+0.017)M(circle dot) star with a radius of 0.877(-0.012)(+0.019) R-circle dot We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654 +/- 0.033.M-circle dot The planet HATS-38b has a mass of 0.074. 0.011MJ (23.5 +/- 3.5M(circle dot)) and a radius of 0.614 +/- 0.017 R-J, and is on a P = 4.3750 day orbit around a V = 12.411 +/- 0.030 mag, 0.890(-0.012)(+0.016) M-circle dot star with a radius of 1.105 +/- 0.016.R-circle dot Both systems appear to be old, with isochrone-based ages of 11.46(-1.45)(+0.79) Gyr, and 11.89 +/- 0.60 Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest-mass planets found from ground-based wide-field surveys to date.
|
|