|
Acuna, M., Eaton, L., & Cifuentes, L. (2004). Genetic variants of the paraoxonases (PON1 and PON2) in the Chilean population. Hum. Biol., 76(2), 299–305.
Abstract: We estimated the frequencies of PON1 and PON2 variants (linked genes) in two hospital samples taken from the northern (San Jose Hospital, SJH) and eastern (Clinica Las Condes, CLC) parts of Santiago, Chile, using the polymerase chain reaction followed by restriction endonuclease digestion. The two hospital samples have different degrees of Amerindian admixture (SJH, 34.5%; CLC, 15.9%), which is reflected in the observed frequencies of the PON1*B allele (SJH, 43.1%; CLC, 33.7%) and the PON2*S allele (SJH, 86.3%; CLC, 77.6%); both allele frequencies are significantly different between samples. The frequencies of the combined PON1-PON2 genotypes *A/*B-*C/*C, *A/*B-*S/*S, and *B/*B-*S/*S and of the haplotypes PON*A,C and PON*B,S were significantly different between the SJH and CLC groups. None of the genotype frequencies deviated significantly from those predicted by the Hardy-Weinberg equation. No linkage disequilibrium was found between the PON1 alleles and any of the PON2 alleles in either group (all p > 0.05). In our samples 38.52% (SJH) and 26.25% (CLC) of chromosomes must have the haplotype PON*B,S, presumed to be related to the risk of coronary artery disease. Twenty-four of 193 (12.4%) SJH individuals and 7 of 122 (5.7%) CLC individuals were homozygotes for this haplotype. Finally, our data indicate ethnic-group-dependent genetic differences in the vulnerability to toxic organophosphorus.
|
|
|
Canessa, E., Chaigneau, S. E., & Moreno, S. (2022). Using agreement probability to study differences in types of concepts and conceptualizers. Behav. Res. Methods, Early Access.
Abstract: Agreement probability p(a) is a homogeneity measure of lists of properties produced by participants in a Property Listing Task (PLT) for a concept. Agreement probability's mathematical properties allow a rich analysis of property-based descriptions. To illustrate, we use p(a) to delve into the differences between concrete and abstract concepts in sighted and blind populations. Results show that concrete concepts are more homogeneous within sighted and blind groups than abstract ones (i.e., exhibit a higher p(a) than abstract ones) and that concrete concepts in the blind group are less homogeneous than in the sighted sample. This supports the idea that listed properties for concrete concepts should be more similar across subjects due to the influence of visual/perceptual information on the learning process. In contrast, abstract concepts are learned based mainly on social and linguistic information, which exhibit more variability among people, thus, making the listed properties more dissimilar across subjects. Relative to abstract concepts, the difference in p(a) between sighted and blind is not statistically significant. Though this is a null result, and should be considered with care, it is expected because abstract concepts should be learned by paying attention to the same social and linguistic input in both, blind and sighted, and thus, there is no reason to expect that the respective lists of properties should differ. Finally, we used p(a) to classify concrete and abstract concepts with a good level of certainty. All these analyses suggest that p(a) can be fruitfully used to study data obtained in a PLT.
|
|
|
Kapitanov, G., Alvey, C., Vogt-Geisse, K., & Feng, Z. L. (2015). An Age-Structured Model For The Coupled Dynamics Of Hiv And Hsv-2. Math. Biosci. Eng., 12(4), 803–840.
Abstract: Evidence suggests a strong correlation between the prevalence of HSV-2 (genital herpes) and the perseverance of the HIV epidemic. HSV-2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the co-infection dynamics between the two diseases by incorporating a time-since-infection variable to track the alternating periods of infectiousness of HSV-2. The model considers only heterosexual relationships and distinguishes three population groups: males, general population females, and female sex workers. We calculate the basic reproduction numbers for each disease that provide threshold conditions, which determine whether a disease dies out or becomes endemic in the absence of the other disease. We also derive the invasion reproduction numbers that determine whether or not a disease can invade into a population in which the other disease is endemic. The calculations of the invasion reproduction numbers suggest a new aspect in their interpretation – the class from which the initial disease carrier arises is important for understanding the invasion dynamics and biological interpretation of the expressions of the reproduction numbers. Sensitivity analysis is conducted to examine the role of model parameters in influencing the model outcomes. The results are discussed in the last section.
|
|
|
Navarrete, S. A., Barahona, M., Weidberg, N., & Broitman, B. R. (2022). Climate change in the coastal ocean: shifts in pelagic productivity and regionally diverging dynamics of coastal ecosystems. Proc. R. Soc. B-Biol. Sci., 289(1970).
Abstract: Climate change has led to intensification and poleward migration of the Southeastern Pacific Anticyclone, forcing diverging regions of increasing, equatorward and decreasing, poleward coastal phytoplankton productivity along the Humboldt Upwelling Ecosystem, and a transition zone around 31 degrees S. Using a 20-year dataset of barnacle larval recruitment and adult abundances, we show that striking increases in larval arrival have occurred since 1999 in the region of higher productivity, while slower but significantly negative trends dominate poleward of 30 degrees S, where years of recruitment failure are now common. Rapid increases in benthic adults result from fast recruitment-stock feedbacks following increased recruitment. Slower population declines in the decreased productivity region may result from aging but still reproducing adults that provide temporary insurance against population collapses. Thus, in this region of the ocean where surface waters have been cooling down, climate change is transforming coastal pelagic and benthic ecosystems through altering primary productivity, which seems to propagate up the food web at rates modulated by stock-recruitment feedbacks and storage effects. Slower effects of downward productivity warn us that poleward stocks may be closer to collapse than current abundances may suggest.
|
|
|
Trifonov, T., Brahm, R., Jordan, A., Hartogh, C., Henning, T., Hobson, M. J., et al. (2023). TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variations Revealed by TESS. Astron. J., 165(4), 179.
Abstract: The K-type star TOI-2525 has an estimated mass of M = 0.849(-0.033)(+0.024) M-circle dot and radius of R = 0.785(-0.007)(+0.007) R-circle dot observed by the TESS mission in 22 sectors (within sectors 1 and 39). The TESS light curves yield significant transit events of two companions, which show strong transit timing variations (TTVs) with a semiamplitude of similar to 6 hr. We performed TTV dynamical and photodynamical light-curve analysis of the TESS data combined with radial velocity measurements from FEROS and PFS, and we confirmed the planetary nature of these companions. The TOI-2525 system consists of a transiting pair of planets comparable to Neptune and Jupiter with estimated dynamical masses of m(b) = 0.088(-0.004)(+0.005) and m(c) = 0.709(-0.033)(+0.034) M-Jup, radii of r(b) = 0.88(-0.02)(+0.02) and r(c) = 0.98(-0.02)(+0.02) R-Jup, and orbital periods of P-b = 23.288(-0.002)(+0.001) and P-c = 49.260(-0.001)(+0.001) days for the inner and outer planet, respectively. The period ratio is close to the 2:1 period commensurability, but the dynamical simulations of the system suggest that it is outside the mean-motion resonance (MMR) dynamical configuration. Object TOI-2525 b is among the lowest-density Neptune-mass planets known to date, with an estimated median density of rho(b) = 0.174(-0.015)(+0.016) g cm(-3). The TOI-2525 system is very similar to the other K dwarf systems discovered by TESS, TOI-2202 and TOI-216, which are composed of almost identical K dwarf primaries and two warm giant planets near the 2:1 MMR.
|
|