Avudaiappan, S., Cendoya, P., Arunachalam, K. P., Maureira-Carsalade, N., Canales, C., Amran, M., et al. (2023). Innovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar. J. Compos. Sci., 7(6), 214.
Abstract: Due to the COVID-19 epidemic, biomedical waste management has overwhelmed both developed and developing nations. It is now a critical issue that has to be addressed with minimal possible adverse impact on the environment. This study introduced a technique of recycling face masks into polypropylene fibers for use in concrete. This proposed recycling process provides complete disinfection of contaminated clinical waste and offers the opportunity to transform the characteristics of an end product. Microfibers manufactured from recycled medical masks were subjected to testing. According to the results, polypropylene is the primary component of this research program. Two batches of concrete were made, one with the inclusion of masks as polypropylene fibers and another that performed as a control mix. The modified mortar was compared to the control mix in split tensile, flexure, compressive strength, and water absorption. Compressive strength was found to be improved by about 17%, and tensile strength to be increased by around 22% when mask fibers were incorporated. This research introduced a novel approach for disposing of waste masks and established the preliminary viability of upcycling trash face masks towards mortar concrete production.
|
Caceres, G., Nasirov, S., Zhang, H. L., & Araya-Letelier, G. (2015). Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter. Sustainability, 7(1), 422–440.
Abstract: This paper addresses an economic study of the installation of photovoltaic (PV) solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE) was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels' surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.
|
Montane, M., Ruiz-Valero, L., Labra, C., Faxas-Guzman, J. G., & Girard, A. (2021). Comparative energy consumption and photovoltaic economic analysis for residential buildings in Santiago de Chile and Santo Domingo of the Dominican Republic. Renew. Sust. Energ. Rev., 146, 111175.
Abstract: This research compares the building energy consumption and the photovoltaic economic analysis between residential buildings in Santiago de Chile and Santo Domingo of the Dominican Republic. The methodology considered thermal simulation, sizing of a solar PV system, an economic analysis and CO2 emissions given the solar resources of both countries. A scenario where the constructive systems are switched between the countries was also analyzed. A comparison of the energy performances of the houses exposed to other climate conditions. Results show that housing in Santiago de Chile required less energy than housing in Santo Domingo due to the fact that the thermal transmittance of the enclosures of the Chilean housing has better thermal behavior, compared to the materials of the Dominican housing. Dominican houses need a higher amount of electricity for air cooling due to the high temperatures in the tropic. Meanwhile, Chilean countries requires a higher amount of gas for heating purposes. The Dominican Republic lacks thermal regulation for construction material, and applying Chilean standards in Dominican houses, helped to lower the yearly electricity demand by 19%. Dominican constructions materials improvement could have an important impact in the country's overall goal to lower CO2 emission and in-house energy savings. The economic analysis showed that the Dominican Republic renewable energies incentives contribute to the development of very attractive PV projects, meanwhile in Chile, the use of net metering instead of net billing could increase by 11 times the net present value of PV projects.
|
Nasirov, S., Ciarreta, A., Agostini, C. A., & Gutiérrez-Hita, C. (2024). Distributed solar PV applications. In Frontiers in Energy Research (Vol. 12, 1367587).
|
Nasirov, S., Gonzalez, P., Opazo, J., & Silva, C. (2023). Development of Rooftop Solar under Netbilling in Chile: Analysis of Main Barriers from Project Developers' Perspectives. Sustainability, 15(3), 2233.
Abstract: The development of rooftop solar PV generation has significant potential to generate enormous benefits to the electricity systems in achieving emission reduction targets and meeting increasing global energy demand, but could also make the power systems more resilient and affordable. In 2012, the Chilean government introduced a net billing law (Law 20.517) to incentivize consumers to sell their excess renewable electricity into the grid, which was expected to lead to a significant growth in rooftop solar. However, to date, the advancement of these technologies in the country has been very limited due to various barriers. For this reason, identifying and mitigating the main barriers that impede the advancement of development of rooftop solar is necessary to allow the successful deployment of these technologies. Based on data collected from a questionnaire survey and interviews conducted among the project developers in rooftop solar, the authors identify and rank the major barriers to the adoption of these technologies in Chile. Our findings show that the most significant barriers include “high investment and recovery period for the customer”, “lack of incentives to develop projects in the sector”, “rigid regulations regarding project size”, and “long administrative process and grid connection costs”. Furthermore, we discuss the most critical barriers in detail together with policy recommendations to overcome them.
|
Pabba, D. P., Rao, B. V. B., Thiam, A., Kumar, M. P., Mangalaraja, R. V., Udayabhaskar, R., et al. (2023). Flexible magnetoelectric PVDF-CoFe2O4 fiber films for self-powered energy harvesters. Ceram. Int., 49(19), 31096–31105.
Abstract: Integrating the concept of magnetoelectric in the mechanical energy harvesters through the magneto-mechanoelectrical (MME) nanogenerators has been explored to realize the self-powered devices. The magnetoelectric interaction enabled the output performance of the MME nanogenerator under magnetic stimulus of the active components of the energy harvesters. In this perspective, we fabricated a flexible biomechanical and MME nanogenerator using PVDF/CoFe2O4 fibers composite films. CoFe2O4 fibers were synthesized by the electrospinning technique and the process parameters were optimized to achieve uniform and bead-free fibers. The structural and morphological properties were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The structural and morphology revealed the fibers calcined at 800 degrees C with a heating rate of 2 degrees C/min produced bead-free continuous fibers with a fiber diameter of 210 nm with cubic spinel crystalline structure with a crystallite size of 34 nm. These highly crystalline fibers were used to fabricate PVDF/CoFe2O4 fibers composite films. The magnetoelectric behaviour of the films verified through polarization vs. electric field (P-E) loops under magnetic field. The leakage current density and mechanism of the composite films were investigated, and it was discovered that the mechanism was due to Schottky emission. Further the energy harvesting performance of the composite films were estimated where the nanogenerator achieved an output voltage of 13 V under biomechanical tapping force while the MME nanogenerator produced 3.5 V under a low frequency stray magnetic field of 6 Oe with a power density of 28 & mu;W/m2.
|
Parrado, C., Girard, A., Simon, F., & Fuentealba, E. (2016). 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy, 94, 422–430.
Abstract: This study calculates the LCOE (Levelized Cost of Energy) on the PSDA (Atacama Solar Platform) for a solar-solar energy mix with the objective of evaluate new options for continuous energy delivery. LCOE was calculated for three 50 MW (megawatt) power plants: A PV (photovoltaic), a CSP (concentrated solar power) plant with 15 h TES (thermal energy storage) and a hybrid PV-CSP plant constituted with 20 MWp of PV and 30 MW of CSP with 15 h TES. Calculations present two scenario projections (Blue Map and Roadmap) until 2050 for each type of plant. Due to the huge solar resource available in northern Chile, the PV-CSP hybrid plant results to be a feasible option for electricity generation, as well as being effectively able to meet electricity demand profile of the mining industry present in the area. This type of energy could mitigate long-term energy costs for the heavy mining activity, as well as the country CO2 emissions. Findings point out that PV-CSP plants are a feasible option able to contribute to the continuous delivery of sustainable electricity in northern Chile. Moreover, this option can also contribute towards electricity price stabilization, thus benefiting the mining industry, as well as reducing Chile's carbon footprint. (C) 2015 Elsevier Ltd. All rights reserved.
|
Petrou, K., Procopiou, A. T., Gutierrez-Lagos, L., Liu, M. C. Z., Ochoa, L. F., Langstaff, T., et al. (2021). Ensuring Distribution Network Integrity Using Dynamic Operating Limits for Prosumers. IEEE Trans. Smart Grid, 12(5), 3877–3888.
Abstract: The number of residential consumers with solar PV and batteries, aka prosumers, has been increasing in recent years. Incentives now exist for prosumers to operate their batteries in more profitable ways than self-consumption mode. However, this can increase prosumer exports or imports, resulting in power flows that can lead to voltage and thermal limit violations in distribution networks. This work proposes a framework for Distribution Network Operators (DNOs) to ensure the integrity of MV-LV networks by using dynamic operating limits for prosumers. Periodically, individual prosumers send their intended operation (net exports/imports) as determined by their local control to the DNO who then assesses network integrity using smart meter data and a power flow engine. If a potential violation is detected, their maximum operating limits are determined based on a three-phase optimal power flow that incorporates network constraints and fairness aspects. A real Australian MV feeder with realistically modelled LV networks and 4,500+ households is studied, where prosumers' local controls operate based on energy prices. Time-series results demonstrate that the proposed framework can help DNOs ensure network integrity and fairness across prosumers. Furthermore, it unlocks larger profitability for prosumers compared with the use the 5kW fixed export limit adopted in Australia.
|
Talreja, N., Ashfaq, M., Chauhan, D., & Mangalaraja, R. V. (2023). PVP encapsulated MXene coated on PET surface (PMP)-based photocatalytic materials: A novel photo-responsive assembly for the removal of tetracycline. Environ. Res., 233, 116439.
Abstract: Tetracycline (TC) antibiotic that is effective against wide-range micro-organisms, thereby used to control bacterial infection. The partial metabolism of TC antibiotics in humans and animals leads to the contamination of TC in the environments like water bodies. Thus, requirements to treat/remove/degrade TC antibiotics from the water bodies to control environmental pollution. In this context, this study focuses on fabricating PVP-MXenePET (PMP) based photo-responsive materials to degrade TC antibiotics from the water. Initially, MXene (Ti2CTx) was synthesized using a simple etching process from the MAX phase (Ti3AlC2). The synthesized MXene was encapsulated using PVP and cast onto the surface of PET to fabricate PMP-based photo-responsive materials. The rough surface and micron/nano-sized pores within the PMP-based photo-responsive materials might be improved the photo-degradation of TC antibiotics. The synthesized PMP-based photo-responsive materials were tested against the photo-degradation of TC antibiotics. The band gap value of the MXene and PMP-based photoresponsive materials was calculated to be -1.23 and 1.67 eV. Incorporating PVP within the MXene increased the band gap value, which might be beneficial for the photo-degradation of TC, as the minimum band gap value should be -1.23 eV or more for photocatalytic application. The highest photo-degradation of -83% was achieved using PMP-based photo-degradation at 0.1 mg/L of TC. Furthermore, -99.71% of photo-degradation of TC antibiotics was accomplished at pH -10. Therefore, the fabricated PMP-based photo-responsive materials might be next-generation devices/materials that efficiently degrade TC antibiotics from the water.
|