Caceres, G., Nasirov, S., Zhang, H. L., & Araya-Letelier, G. (2015). Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter. Sustainability, 7(1), 422–440.
Abstract: This paper addresses an economic study of the installation of photovoltaic (PV) solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE) was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels' surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.
|
Montane, M., Ruiz-Valero, L., Labra, C., Faxas-Guzman, J. G., & Girard, A. (2021). Comparative energy consumption and photovoltaic economic analysis for residential buildings in Santiago de Chile and Santo Domingo of the Dominican Republic. Renew. Sust. Energ. Rev., 146, 111175.
Abstract: This research compares the building energy consumption and the photovoltaic economic analysis between residential buildings in Santiago de Chile and Santo Domingo of the Dominican Republic. The methodology considered thermal simulation, sizing of a solar PV system, an economic analysis and CO2 emissions given the solar resources of both countries. A scenario where the constructive systems are switched between the countries was also analyzed. A comparison of the energy performances of the houses exposed to other climate conditions. Results show that housing in Santiago de Chile required less energy than housing in Santo Domingo due to the fact that the thermal transmittance of the enclosures of the Chilean housing has better thermal behavior, compared to the materials of the Dominican housing. Dominican houses need a higher amount of electricity for air cooling due to the high temperatures in the tropic. Meanwhile, Chilean countries requires a higher amount of gas for heating purposes. The Dominican Republic lacks thermal regulation for construction material, and applying Chilean standards in Dominican houses, helped to lower the yearly electricity demand by 19%. Dominican constructions materials improvement could have an important impact in the country's overall goal to lower CO2 emission and in-house energy savings. The economic analysis showed that the Dominican Republic renewable energies incentives contribute to the development of very attractive PV projects, meanwhile in Chile, the use of net metering instead of net billing could increase by 11 times the net present value of PV projects.
|
Parrado, C., Girard, A., Simon, F., & Fuentealba, E. (2016). 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy, 94, 422–430.
Abstract: This study calculates the LCOE (Levelized Cost of Energy) on the PSDA (Atacama Solar Platform) for a solar-solar energy mix with the objective of evaluate new options for continuous energy delivery. LCOE was calculated for three 50 MW (megawatt) power plants: A PV (photovoltaic), a CSP (concentrated solar power) plant with 15 h TES (thermal energy storage) and a hybrid PV-CSP plant constituted with 20 MWp of PV and 30 MW of CSP with 15 h TES. Calculations present two scenario projections (Blue Map and Roadmap) until 2050 for each type of plant. Due to the huge solar resource available in northern Chile, the PV-CSP hybrid plant results to be a feasible option for electricity generation, as well as being effectively able to meet electricity demand profile of the mining industry present in the area. This type of energy could mitigate long-term energy costs for the heavy mining activity, as well as the country CO2 emissions. Findings point out that PV-CSP plants are a feasible option able to contribute to the continuous delivery of sustainable electricity in northern Chile. Moreover, this option can also contribute towards electricity price stabilization, thus benefiting the mining industry, as well as reducing Chile's carbon footprint. (C) 2015 Elsevier Ltd. All rights reserved.
|
Petrou, K., Procopiou, A. T., Gutierrez-Lagos, L., Liu, M. C. Z., Ochoa, L. F., Langstaff, T., et al. (2021). Ensuring Distribution Network Integrity Using Dynamic Operating Limits for Prosumers. IEEE Trans. Smart Grid, 12(5), 3877–3888.
Abstract: The number of residential consumers with solar PV and batteries, aka prosumers, has been increasing in recent years. Incentives now exist for prosumers to operate their batteries in more profitable ways than self-consumption mode. However, this can increase prosumer exports or imports, resulting in power flows that can lead to voltage and thermal limit violations in distribution networks. This work proposes a framework for Distribution Network Operators (DNOs) to ensure the integrity of MV-LV networks by using dynamic operating limits for prosumers. Periodically, individual prosumers send their intended operation (net exports/imports) as determined by their local control to the DNO who then assesses network integrity using smart meter data and a power flow engine. If a potential violation is detected, their maximum operating limits are determined based on a three-phase optimal power flow that incorporates network constraints and fairness aspects. A real Australian MV feeder with realistically modelled LV networks and 4,500+ households is studied, where prosumers' local controls operate based on energy prices. Time-series results demonstrate that the proposed framework can help DNOs ensure network integrity and fairness across prosumers. Furthermore, it unlocks larger profitability for prosumers compared with the use the 5kW fixed export limit adopted in Australia.
|