|
Pandiyarajan, T., Mangalaraja, R. V., Karthikeyan, B., Arulraj, A., & Gracia-Pinilla, M. A. (2023). Fabrication and spectroscopic investigation of sandwich-like ZnO:rGO:ZnO: rGO:ZnO structure by layer-by-layer approach. Inorg. Chem. Commun., 149, 110383.
Abstract: Transparent conducting materials (TCMs) are the heart of modern optoelectronic industries and the properties of TCMs could be improved by the introduction of 2D carbon materials. In this report, the influence of order layering on microstructural, transparency and emission characteristics of ZnO:rGO:ZnO:rGO:ZnO and rGO:ZnO: rGO:ZnO:rGO sandwich structures has been investigated. The layer-by-layer approach has been adopted for the fabrication of sandwich structured materials ZnO:rGO:ZnO:rGO:ZnO and rGO:ZnO:rGO:ZnO:rGO through the spin coating technique. The sandwich structures of ZnO and rGO exhibited hexagonal wurtzite structure of ZnO without any impurities were identified through XRD. The ordering of layer's influenced the microstructural parameters and were significantly altered. The spherical nature of the particles and the formation of the sand-wich structures were confirmed by using SEM micrograph. The reduction in an optical transparency and nar-rowing bandgap of the ZnO upon the order of layering were identified through transmission spectra. The lower energy shift of near band edge (NBE) emission and reduction in the emission intensity with respect to pure ZnO nanostructures was observed. The present work provides a simple layer-by-layer approach to fabricating sand-wich structures and improving the optical properties which have potential applications in various optoelectronic devices.
|
|
|
Sakthivel, P., Mangalaraja, R. V., Ramalingam, G., Sakthipandi, K., & Gowtham, V. (2023). Synthesis, Structure, Morphology, Element composition, Electrochemical, and Optical studies of Zn0.98-XMn0.02CeX Quantum dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 303, 123140.
Abstract: Quantum dots (QDs) are semiconductors whose size falls in a range between 1 and 10 nm; they are generally known as zero-dimension materials. It finds various applications in optical industries including light-emitting diodes, display technology, imaging, and labelling. ZnS is one of the excellent QDs in its class of II-VI semiconductors. In this paper, It is reported that the preparation of Mn-doped ZnS and Mn, Ce co-doped ZnS QDs using facile co-precipitation technique. XRD and HR-TEM results confirmed the cubic structure, particle size, and phase of the synthesized particles, and the crystallite is measured as -2 nm. The surface morphology, elemental analysis, and FT-IR spectra revealed the purity of the samples and confirmed the presence of dopants as expected. Cyclic voltammetry studies expressed the electrochemical behaviour of the samples, which increased as a function of Ce3+ doping concentration. UV-visible absorbance and transmittance spectra disclosed the optical characteristics of the samples. A wide band gap (4.02 eV) was received for 2% Ce-doped Zn: MnS QDs. Week Blue and strong yellow emissions were received for 4% Ce-doped Zn:MnS QDs. Whereas, high intensity red-emission was received for 2% Ce-doped Zn:MnS QDs. The different colour emissions are discussed in terms of defects produced.
|
|