Home | << 1 >> |
![]() |
Lopatin, J. (2023). Estimation of Foliar Carotenoid Content Using Spectroscopy Wavelet-Based Vegetation Indices. IEEE Geosci. Remote. Sens. Lett., 20, 2500405.
Abstract: The plant carotenoid (Car) content plays a crucial role in the xanthophyll cycle and provides essential information on the physiological adaptations of plants to environmental stress. Spectroscopy data are essential for the nondestructive prediction of Car and other traits. However, Car content estimation is still behind in terms of accuracy compared to other pigments, such as chlorophyll (Chl). Here, I examined the potential of using the continuous wavelet transform (CWT) on leaf reflectance data to create vegetation indices (VIs). I compared six CWT mother families and six scales and selected the best overall dataset using random forest (RF) regressions. Using a brute-force approach, I created wavelet-based VIs on the best mother family and compared them against established Car reflectance-based VIs. I found that wavelet-based indices have high linear sensitivity to the Car content, contrary to typical nonlinear relationships depicted by the reflectance-based VIs. These relations were theoretically contrasted with the synthetic data created using the PROSPECT-D radiative transfer model. However, the best selection of wavelength bands in wavelet-based VIs varies greatly depending on the spectral characteristics of the input data before the transformation.
|
Reszka, P., Cruz, J. J., Valdivia, J., Gonzalez, F., Rivera, J., Carvajal, C., et al. (2020). Ignition delay times of live and dead pinus radiata needles. Fire Saf. J., 112, 7 pp.
Abstract: There are still many open questions related to the fire behavior of live and dead wildland fuels and their senescence process. We have physically and biochemically studied live and dead pinus radiata needles, their aging process, and their fire behavior using a systematic aging procedure which allows to characterize the evolution of the fuel moisture content and the photosynthetic pigments over time, and to determine the period of time after sample collection in which specimens can be considered to be alive. Results show that pine needles stay alive for up to 12 h after collection if they remain attached to the twigs. The influence of senescence on spontaneous ignition was tested on two bench-scale devices, the I-FIT and the SCALA, under discontinuous and continuous configurations, respectively. Live pine needles showed larger critical heat fluxes than dead needles, while dead and re-hydrated samples have increased critical heat fluxes for greater moisture contents. Experimental results were interpreted with thermal models based on a two-phase description of the fuel layer. We established a correlation of the form 1/t(ig)proportional to q(inc)" for both ignition configurations, which is adequate for engineering applications and allows the estimation of effective properties for wildland fuel beds.
|