|
Balocchi, F., Galleguillos, M., Rivera, D., Stehr, A., Arumi, J. L., Pizarro, R., et al. (2023). Forest hydrology in Chile: Past, present, and future. J. Hydrol., 616, 128681.
Abstract: This paper reviews the current knowledge of hydrological processes in Chilean temperate forests which extend along western South America from latitude 29 degrees S to 56 degrees S. This geographic region includes a diverse range of natural and planted forests and a broad sweep of vegetation, edaphic, topographic, geologic, and climatic set-tings which create a unique natural laboratory. Many local communities, endangered freshwater ecosystems, and downstream economic activities in Chile rely on water flows from forested catchments. This review aims to (i) provide a comprehensive overview of Chilean forest hydrology, to (ii) review prior research in forest hydrology in Chile, and to (iii) identify knowledge gaps and provide a vision for future research on forest hydrology in Chile. We reviewed the relation between native forests, commercial plantations, and other land uses on water yield and water quality from the plot to the catchment scale. Much of the global understanding of forests and their relationship with the water cycle is in line with the findings of the studies reviewed here. Streamflow from forested catchments increases after timber harvesting, native forests appear to use less water than plantations, and streams draining native forest yield less sediment than streams draining plantations or grassland/shrublands. We identified 20 key knowledge gaps such as forest groundwater systems, soil-plant-atmosphere interactions, native forest hydrology, and the effect of forest management and restoration on hydrology. Also, we found a paucity of research in the northern geographic areas and forest types (35-36 degrees S); most forest hydrology studies in Chile (56%) have been conducted in the southern area (Los Rios Region around 39-40 degrees S). There is limited knowledge of the geology and soils in many forested areas and how surface and groundwater are affected by changes in land cover. There is an opportunity to advance our understanding using process-based investigations linking field studies and modeling. Through the establishment of a forest hydrology science “society” to coor-dinate efforts, regional and national-scale land use planning might be supported. Our review ends with a vision to advance a cross-scale collaborative effort to use new nation-wide catchment-scale networks Long-term Ecosystem Research (LTER) sites, to promote common and
|
|
|
Carvajal, F., Duran, C., & Aquea, F. (2020). Effect of alerce (Fitzroya cupressoides) cell culture extract on wound healing repair in a human keratinocyte cell line. J. Cosmet. Dermatol., 19(5), 1254–1259.
Abstract: Background Fitzroya cupressoides, commonly known as alerce, is an endemic conifer unique to southern South America. Alerce wood is renowned for its durability and resistance to biological degradation due to the presence of a particular class of secondary metabolite. Alerce extracts have been used in traditional medicine for different skin lesion treatments. Aims To develop a cell culture system to produce alerce extract and evaluate its cytotoxicity and effects on in vitro wound healing. Methods Cell cultures and aqueous extracts were prepared from alerce needles. Cytotoxicity was evaluated in keratinocytes (HaCaT line) and melanocites (C32 line) using the XTT assay. Wound healing was assayed with the scratch test in HaCaT cells, using mitomycin C to evaluate the role of cell division in the wound closure. Results Alerce cell culture extract has a significant effect on wound healing at different concentrations. No positive effects on the viability of normal and cancerous skin cells were observed. These results suggest that alerce extracts stimulate cell division in human skin epidermal cells in the context of wound repair. Conclusions Bioactive compounds extracted from alerce cell cultures show promise as ingredients in dermocosmetic formulations, but further clinical studies are required to support these findings at the tissue level.
|
|
|
Concha, M., & Ruz, G. A. (2023). Evaluation of Atmospheric Environmental Regulations: The Case of Thermoelectric Power Plants. Atmosphere, 14(2), 358.
Abstract: In Chile, the concept of sacrifice zones corresponds to those land surfaces in which industrial development was prioritized over the environmental impact that it caused. A high number of industries that emit pollutants into the environment are concentrated in these zones. This paper studies the atmospheric component of the Environmental Impact Declaration and Assessment�s (EID and EIA, respectively) environmental assessment instruments of the thermoelectric power plants in northern Chile, based on their consistency with current environmental quality regulations. We specify concepts on air quality, atmospheric emission regulations, and the critical parameters and factors to be considered when carrying out an environmental impact assessment. Finally, we end by presenting possible alternatives to replace the current methodologies and criteria for atmospheric regulation in areas identified as saturated or of environmental sacrifice, with an emphasis on both population health and an environmental approach.
|
|
|
Corral, N., Anrique, N., Fernandes, D., Parrado, C., & Caceres, G. (2012). Power, placement and LEC evaluation to install CSP plants in northern Chile. Renew. Sust. Energ. Rev., 16(9), 6678–6685.
Abstract: Chile is expecting a 5.4% growth in energy consumption per year until 2030, requiring new and better solutions for the upward trend of its electricity demand. This state leads to select and study one of the potential alternatives for electricity generation: concentrated solar power (CSP) plants. Such renewable technology found in Chile a very favorable condition. Recent researches indicate Atacama Desert as one of the best regions for solar energy worldwide, having an average radiation higher than in places where CSP plants are currently implemented, e.g. Spain and USA. The aim of this study is to present an analysis of levelized energy cost (LEC) for different power capacities of CSP plants placed in distinct locations in northern Chile. The results showed that CSP plants can be implemented in Atacama Desert with LECs around 19 (sic)US$/kWh when a gas-fired backup and thermal energy storage (TES) systems are fitted. This value increases to approximately 28 (sic)US$/kWh if there is no backup system. (C) 2012 Elsevier Ltd. All rights reserved.
|
|
|
Donoso, R., Leiva-Novoa, P., Zuniga, A., Timmermann, T., Recabarren-Gajardo, G., & Gonzalez, B. (2017). Biochemical and Genetic Bases of Indole-3-Acetic Acid (Auxin Phytohormone) Degradation by the Plant-Growth-Promoting Rhizobacterium Paraburkholderia phytofirmans PsJN. Appl. Environ. Microbiol., 83(1), 20 pp.
Abstract: Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans. These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.
|
|
|
Dreyer, M. J., Weisse, B., Raggio, J. I. C., Zboray, R., Taylor, W. R., Preiss, S., et al. (2023). The influence of implant design and limb alignment on in vivo wear rates of fixed-bearing and rotating-platform knee implant retrievals. J. Orthop. Res., Early Access.
Abstract: Analysis of polyethylene (PE) wear in knee implants is crucial for understanding the factors leading to revision in total knee arthroplasty. Importantly, current experimental and computational methods for predicting insert wear can only be validated against true in vivo measurements from retrievals. This study quantitatively investigated in vivo PE wear rates in fixed-bearing (FB) (n = 21) and rotating-platform (n = 53) implant retrievals. 3D surface geometry of the retrievals was measured using a structured light scanner. Then, a reference surface that included the deformation, but not the wear that the retrievals had experienced in vivo, was constructed using a fully automatic surface reconstruction algorithm. Finally, wear volume was calculated from the deviation between the worn and reconstructed surfaces. The measurement and analysis techniques were validated and the algorithm was found to produce errors of only 0.2% relative to the component volumes. In addition to quantifying cohort-level wear rates, the effect of mechanical axis limb alignment on mediolateral wear distribution was examined for a subset of the retrievals (n = 14 + 26). Our results show that FB implants produce significantly (p = 0.04) higher topside wear rates (24.6 +/- 10.1 mm3/year) than rotating-platform implants (15.3 +/- 8.0 mm3/year). This effect was larger than that of limb alignment, which had a smaller and nonsignificant influence on overall wear rates (+4.5 +/- 11.6 mm3/year, p = 0.43). However, increased varus alignment was associated significantly with greater medial compartment wear in both the FB and rotating-platform designs (+1.7 +/- 1.3%/degrees and +1.8 +/- 1.6%/degrees). Our findings emphasize the importance of implant design and limb alignment on wear outcomes, providing reference data for improving implant performance and longevity.
|
|
|
Kraiser, T., Gras, D. E., Gutierrez, A. G., Gonzalez, B., & Gutierrez, R. A. (2011). A holistic view of nitrogen acquisition in plants. J. Exp. Bot., 62(4), 1455–1466.
Abstract: Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.
|
|
|
Kraiser, T., Stuardo, M., Manzano, M., Ledger, T., & Gonzalez, B. (2013). Simultaneous assessment of the effects of an herbicide on the triad: rhizobacterial community, an herbicide degrading soil bacterium and their plant host. Plant Soil, 366(1-2), 377–388.
Abstract: This work addresses the relevant effects that one single compound, used as model herbicide, provokes on the activity/survival of a suitable herbicide degrading model bacterium and on a plant that hosts this bacterium and its bacterial rhizospheric community. The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on Acacia caven hosting the 2,4-D degrading bacterium Cupriavidus pinatubonensis JMP134, and its rhizospheric microbiota, were simultaneously addressed in plant soil microcosms, and followed by culture dependent and independent procedures, herbicide removal tests, bioprotection assays and use of encapsulated bacterial cells. The herbicide provokes deleterious effects on the plant, which are significantly diminished by the presence of the plant associated C. pinatubonensis, especially with encapsulated cells. This improvement correlated with increased 2,4-D degradation rates. The herbicide significantly changes the structure of the A. caven bacterial rhizospheric community; and it also diminishes the preference of C. pinatubonensis for the A. caven rhizosphere compared with the surrounding bulk soil. The addition of an herbicide to soil triggers a complex, although more or less predictable, suite of effects on rhizobacterial communities, herbicide degrading bacteria and their plant hosts that should be taken into account in fundamental studies and design of bio(phyto)remediation procedures.
|
|
|
Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., et al. (2016). Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front. Microbiol., 7, 18 pp.
Abstract: Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homosenne-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
|
|
|
Ledger, T., Zuniga, A., Kraiser, T., Dasencich, P., Donoso, R., Perez-Pantoja, D., et al. (2012). Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie Van Leeuwenhoek, 101(4), 713–723.
Abstract: Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the beta-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.
|
|
|
Lopatin. (2023). Interannual Variability of Remotely Sensed Phenology Relates to Plant Communities. IEEE Geosci. Remote. Sens. Lett., 20, 2502405.
Abstract: Vegetation phenology is considered an essential biological indicator in understanding the behavior of ecosystems and how they respond to environmental cues. However, the potential of interannual variations of remotely sensed phenology signals to differentiate plant types remains poorly understood, especially in understudied systems with highly heterogeneous landscapes such as wetlands. This study presents a case study in a San Francisco Bay area marsh that investigates the usefulness of interannual variation, defined as the root-mean-square error of enhanced vegetation index (EVI) measurements against a fitted phenology curve, at the beginning, middle, and end of the growing season as indicators of plant types. The study found that altitude above sea level and certain land surface phenology metrics, such as the day-of-the-year of the end of the season, the mid-autumn day, and the greening rate before the summer peak, were significantly related to these interannual variation trends. These results indicate that a detailed time-series analysis at the beginning and end of growing seasons may enhance large-scale wetland characterization. Overall, the findings of this study contribute to our understanding of vegetation phenology and provide a framework for more accurate wetland classification in future studies.
|
|
|
Lopatin, J., Araya-Lopez, R., Galleguillos, M., & Perez-Quezada, J. F. (2022). Disturbance alters relationships between soil carbon pools and aboveground vegetation attributes in an anthropogenic peatland in Patagonia. Ecol. Evol., 12(3), e8694.
Abstract: Anthropogenic-based disturbances may alter peatland soil-plant causal associations and their ability to sequester carbon. Likewise, it is unclear how the vegetation attributes are linked with different soil C decomposition-based pools (i.e., live moss, debris, and poorly- to highly-decomposed peat) under grassing and harvesting conditions. Therefore, we aimed to assess the relationships between aboveground vegetation attributes and belowground C pools in a Northern Patagonian peatland of Sphagnum magellanicum with disturbed and undisturbed areas. We used ordination to depict the main C pool and floristic gradients and structural equation modeling (SEM) to explore the direct and indirect relationships among these variables. In addition, we evaluated whether attributes derived from plant functional types (PFTs) are better suited to predict soil C pools than attributes derived from species gradients. We found that the floristic composition of the peatland can be classified into three categories that follow the C pool gradient. These categories correspond to (1) woody species, such as Baccharis patagonica, (2) water-logged species like Juncus procerus, and (3) grasslands. We depicted that these classes are reliable indicators of soil C decomposition stages. However, the relationships change between management. We found a clear statistical trend showing a decrease of live moss, debris, and poorly-decomposed C pools in the disturbed area. We also depicted that plant diversity, plant height, and PFT composition were reliable indicators of C decomposition only under undisturbed conditions, while the species-based attributes consistently yielded better overall results predicting soil C pools than PFT-based attributes. Our results imply that managed peatlands of Northern Patagonia with active grassing and harvesting activities, even if small-scaled, will significantly alter their future C sequestration capacities by decreasing their live and poorly-decomposed components. Finally, aboveground vegetation attributes cannot be used as proxies of soil C decomposition in disturbed peatlands as they no longer relate to decomposition stages.
|
|
|
Marin, O., Gonzalez, B., & Poupin, M. J. (2021). From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. Front. Plant Sci., 12, 650609.
Abstract: Synthetic microbial communities (SynComs) are a useful tool for a more realistic understanding of the outcomes of multiple biotic interactions where microbes, plants, and the environment are players in time and space of a multidimensional and complex system. Toward a more in-depth overview of the knowledge that has been achieved using SynComs in the rhizosphere, a systematic review of the literature on SynComs was performed to identify the overall rationale, design criteria, experimental procedures, and outcomes of in vitro or in planta tests using this strategy. After an extensive bibliography search and a specific selection process, a total of 30 articles were chosen for further analysis, grouping them by their reported SynCom size. The reported SynComs were constituted with a highly variable number of members, ranging from 3 to 190 strains, with a total of 1,393 bacterial isolates, where the three most represented phyla were Proteobacteria, Actinobacteria, and Firmicutes. Only four articles did not reference experiments with SynCom on plants, as they considered only microbial in vitro studies, whereas the others chose different plant models and plant-growth systems; some of them are described and reviewed in this article. Besides, a discussion on different approaches (bottom-up and top-down) to study the microbiome role in the rhizosphere is provided, highlighting how SynComs are an effective system to connect and fill some knowledge gaps and to have a better understanding of the mechanisms governing these multiple interactions. Although the SynCom approach is already helpful and has a promising future, more systematic and standardized studies are needed to harness its full potential.
|
|
|
Menares, F., Carrasco, M. A., Gonzalez, B., Fuentes, I., & Casanova, M. (2017). Phytostabilization Ability of Baccharis linearis and Its Relation to Properties of a Tailings-Derived Technosol. Water Air Soil Pollut., 228(5), 17 pp.
Abstract: Spontaneous colonization of mine tailing dams by plants is a potential tool for phytostabilization of such reservoirs. However, the physical and chemical properties of each mine tailings deposit determine the success of natural plant establishment. The plant Baccharis linearis is the main native nanophanerophyte species (evergreen sclerophyllous shrub) that naturally colonizes abandoned copper tailings dams in arid to semiarid north-central Chile. This study compare growth of B. linearis against the physical and chemical properties of a Technosol derived from copper mine tailings. Five sites inside the deposit were selected based on B. linearis vegetation density (VD), at two soil sampling depths under the canopy of adult individuals. Physical and chemical properties of tailings samples and nutrient concentrations in tailings and plants were each determined. Some morphological features of the plants (roots and aerial parts) were also quantified. There were significant differences in soil available water capacity (AW) and relative density (Rd) at different VD. Sites with low AW and high Rd had lower nutrient concentrations and higher Zn content in tailings, decreased infection by arbuscular mycorrhizal fungi, and increased fine root abundance and root hair length in individual plants. In contrast, higher AW, which was positively correlated with fine particles and organic matter content, had a positive effect on vegetation coverage, increased N and P contents in tailings, and increased N contents in leaf tissues, even when available N and P levels in tailings were low. Multiple constraints, such as low AW, N, P, and B contents and high Zn concentrations in the tailings restricted vegetation coverage, but no phenotypic differences were observed between individuals. Thus, in order to promote dense coverage by B. linearis, water retention in these tailings must be improved by increasing colloidal particles (organic and/or inorganic) contents, which have a positive effect on colonization by this species.
|
|
|
Mora-Ruiz, M. D., Alejandre-Colomo, C., Ledger, T., Gonzalez, B., Orfila, A., & Rossello-Mora, R. (2018). Non-halophilic endophytes associated with the euhalophyte Arthrocnemum macrostachyum and their plant growth promoting activity potential. FEMS Microbiol. Lett., 365(19), 11 pp.
Abstract: Numerous microbial taxa establish natural relations with plants, and especially endophytes can be relevant in the development and growth promotion of their host. In this work, we explore the diversity of non-halophilic microorganisms inhabiting the endosphere of the halophyte Arthrocnemum macrostachyum. A total of 1045 isolates were recovered using standard non-saline media, which clustered into 22 operational phylogenetic units (OPUs) including 7 putative new species and 13 OPUs not previously detected as endophytes. The more abundant isolates corresponded to close relatives of Kushneria indalinina/K. marisflavi, Providencia rettgeri, Pseudomonas zhaodongensis and Bacillus safensis, which made up to similar to 62% of the total isolates. We also isolated OPUs not detected by the culture-independent approach reinforcing the need of culturing to reveal the microbial diversity associated with plants. Additionally, the plant growth promoting activity was evaluated by representative strains of the more abundant OPUs (total = 94 strains) including also some previously isolated halophiles from the same plants. Under both saline and non-saline conditions, some strains principally those affiliated to Paenibacillus borealis, Staphylococcus equorum, Salinicola halophilus and Marinococcus tarijensis, presented growth promoting activity in Arabidopsis thaliana, which was evaluated as an increment of weight and root length.
|
|
|
Orellana, D., Machuca, D., Ibeas, M. A., Estevez, J. M., & Poupin, M. J. (2022). Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants. Front. Microbiol., 13, 1083270.
Abstract: Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria.
|
|
|
Pedrouso, A., Morales, N., Rodelas, B., Correa-Galeote, D., del Rio, A. V., Campos, J. L., et al. (2023). Rapid start-up and stable maintenance of the mainstream nitritation process based on the accumulation of free nitrous acid in a pilot-scale two-stage nitritation-anammox system. Sep. Purif. Technol., 317, 123851.
Abstract: Two-stage partial nitritation (PN) and anammox (AMX) systems showed promising results for applying auto-trophic nitrogen removal under mainstream conditions. In this study, a pilot-scale (600 L per reactor) two-stage PN/AMX system was installed in a municipal wastewater treatment plant (WWTP) provided with a high-rate activated sludge (HRAS) system for organic carbon removal. The PN/AMX system was operated without tem-perature control (ranging from 11 to 28 degrees C) and was subjected to the same variations in wastewater charac-teristics as the WWTP (22 to 63 mg NH4+- N/L). The developed strategy is simple, does not require the addition of chemicals and is characterised by short start-up periods. The PN process was established by applying a high hydraulic load and maintained by in situ accumulated free nitrous acid (FNA) of 0.015-0.2 mg HNO2-N/L. Based on pH value, a controlled aeration strategy was applied to achieve the target nitrite to ammonium ratio in the effluent (1.1 g NO2--N/g NH4+-N) to feed the AMX reactor. Although NOB were not fully washed out from the system, nitrite accumulation remained (>99 %) stable with no evidence of NOB activity. In the AMX reactor, an overall nitrogen removal efficiency of 80 % was achieved. Regarding effluent quality, 12 +/- 3 mg TN/L was obtained, but 5 mg NO3--N/L was already in the HRAS effluent. The relative abundance of NOB showed a strong negative correlation with the FNA concentration, providing a good strategy for establishing PN under main-stream conditions.
|
|
|
Perez-Quezada, J. F., Lopatin, J., Donoso, M. R., Hurtado, C., Reyes, I., Seguel, O., et al. (2023). Indicators of ecosystem degradation along an elevational gradient in the Mediterranean Andes. Ecol. Indic., 153, 110388.
Abstract: Successful restoration measures need a good understanding of how the composition, structure, and functioning of ecosystems change with degradation and what the best indicators of these changes are. To answer these questions, we worked on four ecosystem types in the Mediterranean Andes mountains in central Chile (from sclerophyllous forest to Andean shrublands), which represent an elevational gradient from 700 to 3,250 m. We sampled three plots on each of the three degradation levels (low, medium, and high) for each ecosystem at increasing distances from goat corrals. We measured 35 indicators that describe vegetation (14), soil (15), and ecosystem processes (6) for one growing season. Degradation caused a decrease in shrub cover, shrub productivity, the Normalized Community Structure Integrity Index (CSIIn), litter depth, total soil nitrogen and C/N ratio, and an increase in clay content. Plant species indicating low degradation were consistently native woody species. When comparing ecosystems (i.e., at different elevations) against the type of variable, process-based indicators showed more statistically significant differences. Based on their consistency across ecosystems and ease of measurement, we recommend using shrub cover and litter depth as indicators of degradation. Finally, we concluded that ecosystems are highly degraded when vegetation- and process-based indicators change – 60% or when soil indicators change – 25%. These results could also be used to set goals for restoration projects in these mountain ecosystems.
|
|
|
Pinedo, I., Ledger, T., Greve, M., & Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front. Plant Sci., 6, 17 pp.
Abstract: Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging Oscorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and longterm stress (Arabidopsis K Transporter 1, High-Affinity K Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.
|
|
|
Poupin, M. J., Ledger, T., Rosello-Mora, R., & Gonzalez, B. (2023). The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. Environ. microbiome, 18(1), 9.
Abstract: As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
|
|