Campos, J. L., Crutchik, D., Franchi, O., Pavissich, J. P., Belmonte, M., Pedrouso, A., et al. (2019). Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. Front. Sustain. Food Syst., 2, 11 pp.
Abstract: Anaerobic digestion (AD) is commonly used for the stabilization of agro-food wastes and recovery of energy as methane. Since AD removes organic C but not nutrients (N and P), additional processes to remove them are usually applied to meet the stringent effluent criteria. However, in the past years, there was a shift from the removal to the recovery of nutrients as a result of increasing concerns regarding limited natural resources and the importance given to the sustainable treatment technologies. Recovering N and P from anaerobically pretreated agro-food wastes as easily transportable and marketable products has gained increasing importance to meet both regulatory requirements and increase revenue. For this reason, this review paper gives a critical comparison of the available and emerging technologies for N and P recovery from AD residues.
|
Chang, M., Liu, B., Wang, B., Martinez-Villalobos, C., Ren, G., & Zhou, T. (2022). Understanding future increases in precipitation extremes in global land monsoon regions. J. Clim., 35, 1839–1851.
Abstract: This study investigates future changes in daily precipitation extremes and the involved physics over the global land monsoon (GM) region using climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6). The daily precipitation extreme is identified by the cutoff scale, measuring the extreme tail of the precipitation distribution. Compared to the historical period, multi-model results reveal a continuous increase in precipitation extremes under four scenarios, with a progressively higher fraction of precipitation exceeding the historical cutoff scale when moving into the future. The rise of the cutoff-scale by the end of the century is reduced by 57.8% in the moderate emission scenario relative to the highest scenario, underscoring the social benefit in reducing emissions. The cutoff scale sensitivity, defined by the increasing rates of the cutoff scale over the GM region to the global mean surface temperature increase, is nearly independent of the projected periods and emission scenarios, roughly 8.0% K−1 by averaging all periods and scenarios. To understand the cause of the changes, we applied a physical scaling diagnostic to decompose them into thermodynamic and dynamic contributions. We find that thermodynamics and dynamics have comparable contributions to the intensified precipitation extremes in the GM region. Changes in thermodynamic scaling contribute to a spatially uniform increase pattern, while changes in dynamic scaling dominate the regional differences in the increased precipitation extremes. Furthermore, the large inter-model spread of the projection is primarily attributed to variations of dynamic scaling among models.
|
Fustos-Toribio, I., Manque-Roa, N., Vasquez Antipan, D., Hermosilla Sotomayor, M., & Gonzalez, V. L. (2022). Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes. Nat. Hazards Earth Syst. Sci., 22(6), 2169–2183.
Abstract: Rainfall-induced landslides (RILs) are an issue in the southern Andes nowadays. RILs cause loss of life and damage to critical infrastructure. Rainfall-induced landslide early warning systems (RILEWSs) can reduce and mitigate economic and social damages related to RIL events. The southern Andes do not have an operational-scale RILEWS yet. In this contribution, we present a pre-operational RILEWS based on the Weather and Research Forecast (WRF) model and geomorphological features coupled to logistic models in the southern Andes. The models have been forced using precipitation simulations. We correct the precipitation derived from WRF using 12 weather stations through a bias correction approach. The models were trained using 57 well-characterized RILs and validated by ROC analysis. We show that WRF has strong limitations in representing the spatial variability in the precipitation. Therefore, accurate precipitation needs a bias correction in the study zone. We used accurate precipitation simulation and slope, demonstrating a high predicting capacity (area under the curve, AUC, of 0.80). We conclude that our proposal could be suitable at an operational level under determined conditions. A reliable RIL database and operational weather networks that allow real-time correction of the mesoscale model in the implemented zone are needed. The RILEWSs could become a support to decision-makers during extreme-precipitation events related to climate change in the south of the Andes.
|
Jarpa, M., Rozas, O., Salazar, C., Baeza, C., Campos, J. L., Mansilla, H. D., et al. (2016). Comparison of the chemical precipitation, UV/H2O2 and Fenton processes to optimize removal of chronic toxicity from kraft mill effluents. Desalin. Water Treat., 57(30), 13887–13896.
Abstract: Secondary Treatment Effluents (STE) from Kraft mill effluents are discharged into aquatic ecosystems with high color and chronic toxicity contents owing to the recalcitrance of compounds in the effluents. The goal of the study was to evaluate the chemical precipitation, UV/H2O2, and the Fenton processes (H2O2/Fe2+) for chemical oxygen demand (COD) and for removing chronic toxicity from STE. A circumscribed central composite model and a response surface methodology were used to evaluate the effects of variables such as Al-2(SO4)(3), Fe(II), and H2O2 concentration and pH range for each treatment. The optimal conditions were 984.2mg Al-2(SO4)(3)/L and pH 5.2 for chemical precipitation; 51.4mM H2O2 and pH 5.1 for UV/H2O2; and 5.5mM Fe(II): 25mM H2O2 concentration and pH 2.8 for H2O2/Fe2+. Under such optimal conditions, COD removal was 84.7, 80.0, and 93.6%, with reaction times of 57, 75, and 10min for the chemical precipitation, UV/H2O2, and H2O2/Fe2+ methods, respectively. This study recorded chronic toxicity in STE and sludge formed during chemical precipitation with maximum reductions in percentages of Allometric Growth Rate (AGR) of 11.5 for STE without dilution (100%, p<0.05). For chemical precipitation sludge, the maximum reduction of AGR was 3.4% for a dilution of 75%. We concluded that all the assessed treatments effectively removed chronic toxicity in the treated effluents.
|
Neelin, J. D., Martinez-Villalobos, C., Stechmann, S. N., Ahmed, F., Chen, G., Norris, J. M., et al. (2022). Precipitation Extremes and Water Vapor Relationships in Current Climate and Implications for Climate Change. Curr. Clim. Change Rep., 8(1), 17–33.
Abstract: Purpose of Review: Review our current understanding of how precipitation is related to its thermodynamic environment, i.e., the water vapor and temperature in the surroundings, and implications for changes in extremes in a warmer climate. Recent Findings: Multiple research threads have i) sought empirical relationships that govern onset of strong convective precipitation, or that might identify how precipitation extremes scale with changes in temperature; ii) examined how such extremes change with water vapor in global and regional climate models under warming scenarios; iii) identified fundamental processes that set the characteristic shapes of precipitation distributions. While water vapor increases tend to be governed by the Clausius-Clapeyron relationship to temperature, precipitation extreme changes are more complex and can increase more rapidly, particularly in the tropics. Progress may be aided by bringing separate research threads together and by casting theory in terms of a full explanation of the precipitation probability distribution.
|