Barros, M., Galea, M., Leiva, V., & Santos-Neto, M. (2018). Generalized Tobit models: diagnostics and application in econometrics. J. Appl. Stat., 45(1), 145–167.
Abstract: The standard Tobit model is constructed under the assumption of a normal distribution and has been widely applied in econometrics. Atypical/extreme data have a harmful effect on the maximum likelihood estimates of the standard Tobit model parameters. Then, we need to count with diagnostic tools to evaluate the effect of extreme data. If they are detected, we must have available a Tobit model that is robust to this type of data. The family of elliptically contoured distributions has the Laplace, logistic, normal and Student-t cases as some of its members. This family has been largely used for providing generalizations of models based on the normal distribution, with excellent practical results. In particular, because the Student-t distribution has an additional parameter, we can adjust the kurtosis of the data, providing robust estimates against extreme data. We propose a methodology based on a generalization of the standard Tobit model with errors following elliptical distributions. Diagnostics in the Tobit model with elliptical errors are developed. We derive residuals and global/local influence methods considering several perturbation schemes. This is important because different diagnostic methods can detect different atypical data. We implement the proposed methodology in an R package. We illustrate the methodology with real-world econometrical data by using the R package, which shows its potential applications. The Tobit model based on the Student-t distribution with a small quantity of degrees of freedom displays an excellent performance reducing the influence of extreme cases in the maximum likelihood estimates in the application presented. It provides new empirical evidence on the capabilities of the Student-t distribution for accommodation of atypical data.
|
Garcia-Papani, F., Uribe-Opazo, M. A., Leiva, V., & Aykroyd, R. G. (2017). Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch. Environ. Res. Risk Assess., 31(1), 105–124.
Abstract: Applications of statistical models to describe spatial dependence in geo-referenced data are widespread across many disciplines including the environmental sciences. Most of these applications assume that the data follow a Gaussian distribution. However, in many of them the normality assumption, and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where the data are uni-modal and positively skewed, the Birnbaum-Saunders (BS) distribution has excelled. This paper proposes a spatial log-linear model based on the BS distribution. Model parameters are estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sensitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus concentration in the soil is considered-which is extremely important for agricultural management.
|
Leiva, V., Marchant, C., Ruggeri, F., & Saulo, H. (2015). A criterion for environmental assessment using Birnbaum-Saunders attribute control charts. Environmetrics, 26(7), 463–476.
Abstract: Assessing environmental risk is useful for preventing adverse effects on human health in highly polluted cities. We design a criterion for environmental monitoring based on an attribute control chart for the number of dangerous contaminant levels when the concentration to be monitored follows a Birnbaum-Saunders distribution. This distribution is being widely applied to environmental data. We provide a novel justification for its usage in environmental sciences. The control coefficient and the minimum inspection concentration for the designed criterion are determined to yield the specified in-control average run length, whereas the out-of-control case is obtained according to a shift in the target mean. A simulation study is conducted to evaluate the proposed criterion, which reports its performance to provide earlier alerts of out-of-control processes. An application with real-world environmental data is carried out to validate its coherence with what is reported by the health authority. Copyright (c) 2015 John Wiley & Sons, Ltd.
|
Leiva, V., Ruggeri, F., Saulo, H., & Vivanco, J. F. (2017). A methodology based on the Birnbaum-Saunders distribution for reliability analysis applied to nano-materials. Reliab. Eng. Syst. Saf., 157, 192–201.
Abstract: The Birnbaum-Saunders distribution has been widely studied and applied to reliability studies. This paper proposes a novel use of this distribution to analyze the effect on hardness, a material mechanical property, when incorporating nano-particles inside a polymeric bone cement. A plain variety and two modified types of mesoporous silica nano-particles are considered. In biomaterials, one can study the effect of nano-particles on mechanical response reliability. Experimental data collected by the authors from a micro-indentation test about hardness of a commercially available polymeric bone cement are analyzed. Hardness is modeled with the Birnbaum-Saunders distribution and Bayesian inference is performed to derive a methodology, which allows us to evaluate the effect of using nano-particles at different loadings by the R software. (C) 2016 Elsevier Ltd. All rights reserved.
|
Leiva, V., Santos-Neto, M., Cysneiros, F. J. A., & Barros, M. (2016). A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution. Appl. Stoch. Models. Bus. Ind., 32(1), 74–89.
Abstract: The Birnbaum-Saunders (BS) distribution is receiving considerable attention. We propose a methodology for inventory logistics that allows demand data with zeros to be modeled by means of a new discrete-continuous mixture distribution, which is constructed by using a probability mass at zero and a continuous component related to the BS distribution. We obtain some properties of the new mixture distribution and conduct a simulation study to evaluate the performance of the estimators of its parameters. The methodology for stochastic inventory models considers also financial indicators. We illustrate the proposed methodology with two real-world demand data sets. It shows its potential, highlighting the convenience of using it by improving the contribution margins of a Chilean food industry. Copyright (c) 2015 John Wiley & Sons, Ltd.
|
Lillo, C., Leiva, V., Nicolis, O., & Aykroyd, R. G. (2018). L-moments of the Birnbaum-Saunders distribution and its extreme value version: estimation, goodness of fit and application to earthquake data. J. Appl. Stat., 45(2), 187–209.
Abstract: Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important as it helps in the prediction of their future occurrence and hence provides better civil protection. Distributions describing these events are known to be heavy tailed and positive skew making standard distributions unsuitable for modelling the frequency of such events. The Birnbaum-Saunders distribution and its extreme value version have been widely studied and applied due to their attractive properties. We derive L-moment equations for these distributions and propose novel methods for parameter estimation, goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the performance of the L-moment estimators, which is compared to that of the maximum likelihood estimators, demonstrating the superiority of the proposed methods. To illustrate these methods in a practical application, a data analysis of real-world earthquake magnitudes, obtained from the global centroid moment tensor catalogue during 1962-2015, is carried out. This application identifies the extreme value Birnbaum-Saunders distribution as a better model than classic extreme value distributions for describing seismic events.
|
Marchant, C., Leiva, V., & Cysneiros, F. J. A. (2016). A Multivariate Log-Linear Model for Birnbaum-Saunders Distributions. IEEE Trans. Reliab., 65(2), 816–827.
Abstract: Univariate Birnbaum-Saunders models have been widely applied to fatigue studies. Calculation of fatigue life is of great importance in determining the reliability of materials. We propose and derive new multivariate generalized Birnbaum-Saunders regression models. We use the maximum likelihood method and the EM algorithm to estimate their parameters. We carry out a simulation study to evaluate the performance of the corresponding maximum likelihood estimators. We illustrate the new models with real-world multivariate fatigue data.
|
Marchant, C., Leiva, V., Cysneiros, F. J. A., & Vivanco, J. F. (2016). Diagnostics in multivariate generalized Birnbaum-Saunders regression models. J. Appl. Stat., 43(15), 2829–2849.
Abstract: Birnbaum-Saunders (BS) models are receiving considerable attention in the literature. Multivariate regression models are a useful tool of the multivariate analysis, which takes into account the correlation between variables. Diagnostic analysis is an important aspect to be considered in the statistical modeling. In this paper, we formulate multivariate generalized BS regression models and carry out a diagnostic analysis for these models. We consider the Mahalanobis distance as a global influence measure to detect multivariate outliers and use it for evaluating the adequacy of the distributional assumption. We also consider the local influence approach and study how a perturbation may impact on the estimation of model parameters. We implement the obtained results in the R software, which are illustrated with real-world multivariate data to show their potential applications.
|
Santos-Neto, M., Cysneiros, F. J. A., Leiva, V., & Barros, M. (2016). Reparameterized Birnbaum-Saunders regression models with varying precision. Electron. J. Stat., 10(2), 2825–2855.
Abstract: We propose a methodology based on a reparameterized Birnbaum-Saunders regression model with varying precision, which generalizes the existing works in the literature on the topic. This methodology includes the estimation of model parameters, hypothesis tests for the precision parameter, a residual analysis and influence diagnostic tools. Simulation studies are conducted to evaluate its performance. We apply it to two real-world case-studies to show its potential with the R software.
|
Wanke, P., Ewbank, H., Leiva, V., & Rojas, F. (2016). Inventory management for new products with triangularly distributed demand and lead-time. Comput. Oper. Res., 69, 97–108.
Abstract: This paper proposes a computational methodology to deal with the inventory management of new products by using the triangular distribution for both demand per unit time and lead-time. The distribution for demand during lead-time (or lead-time demand) corresponds to the sum of demands per unit time, which is difficult to obtain. We consider the triangular distribution because it is useful when a distribution is unknown due to data unavailability or problems to collect them. We provide an approach to estimate the probability density function of the unknown lead-time demand distribution and use it to establish the suitable inventory model for new products by optimizing the associated costs. We evaluate the performance of the proposed methodology with simulated and real-world demand data. This methodology may be a decision support tool for managers dealing with the measurement of demand uncertainty in new products. (C) 2015 Elsevier Ltd. All rights reserved.
|