|
Larrain, F. A., Fuentes-Hernandez, C., Chang, Y. C. H., Rodriguez-Toro, V. A., Abraham, S., & Kippelen, B. (2021). Increasing Volume in Conjugated Polymers to Facilitate Electrical Doping with Phosphomolybdic Acid. ACS Appl. Mater. Interfaces, 13(19), 23260–23267.
Abstract: Molecular p-type electrical dopants have been proven useful to fine-tune the optoelectronic properties of bulk organic semiconductors and their interfaces. Here, the volume in polymer films and its role in solution-based electrical p-type doping using phosphomolybdic acid (PMA) are studied. The polymer film volume was controlled using two approaches. One is based on heating both the PMA solution and the film prior to immersion. The second is based on coating the polymer film with a liquid blend that contains the PMA solution and a swelling solvent. 31P NMR and FTIR experiments indicate that the Keggin structure appears to be preserved throughout the doping process. Results show that increasing the polymer volume facilitates the infiltration of the PMA Keggin structure, which results in an increased electrical p-type doping level.
|
|
|
Sanhueza, L., Garrido, K., Celis, F., Garcia, M., Caceres, C., Moczko, E., et al. (2023). Tailoring the electroactive area of carbon screen-printed electrodes by simple activation steps towards rutin determination. J. Solid State Electrochem., 27, 1511–1521.
Abstract: Screen-printed electrodes (SPEs) have the advantage of being considered electrochemical cells that can be implemented in portable sensor applications. With the aim to improve the SPE performance, herein, we present different electrochemical surface modifications of carbon-based SPEs by cyclic voltammetry in hydrogen peroxide or sodium peroxide solution. SPEs were characterized using contact angle, Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and electrochemical methods, including cyclic voltammetry (CV), electrochemical impedance spectroscopy, and square wave voltammetry (SVW). Main results agree with the observed changes by Raman spectroscopy and the sp(2)/sp(3) ratio (I-D/I-G) of carbon vibrational bands. The diminishing of C-2 Swan signal determined by LIBS suggests that the activation steps produced defects onto the working electrode in the SPE. Considering that the different intermolecular forces of the redox couples are useful to indirectly evaluate the different functional groups, the activated SPEs were studied in the presence of rutin and [Fe(CN)(6)](3-)/[Fe(CN)(6)](4-) redox couples. Main results show that the electrochemical response of the activated electrode surfaces can be properly used to improve the rutin electrochemical determination.
|
|