|
Dreyer, M. J., Weisse, B., Raggio, J. I. C., Zboray, R., Taylor, W. R., Preiss, S., et al. (2023). The influence of implant design and limb alignment on in vivo wear rates of fixed-bearing and rotating-platform knee implant retrievals. J. Orthop. Res., Early Access.
Abstract: Analysis of polyethylene (PE) wear in knee implants is crucial for understanding the factors leading to revision in total knee arthroplasty. Importantly, current experimental and computational methods for predicting insert wear can only be validated against true in vivo measurements from retrievals. This study quantitatively investigated in vivo PE wear rates in fixed-bearing (FB) (n = 21) and rotating-platform (n = 53) implant retrievals. 3D surface geometry of the retrievals was measured using a structured light scanner. Then, a reference surface that included the deformation, but not the wear that the retrievals had experienced in vivo, was constructed using a fully automatic surface reconstruction algorithm. Finally, wear volume was calculated from the deviation between the worn and reconstructed surfaces. The measurement and analysis techniques were validated and the algorithm was found to produce errors of only 0.2% relative to the component volumes. In addition to quantifying cohort-level wear rates, the effect of mechanical axis limb alignment on mediolateral wear distribution was examined for a subset of the retrievals (n = 14 + 26). Our results show that FB implants produce significantly (p = 0.04) higher topside wear rates (24.6 +/- 10.1 mm3/year) than rotating-platform implants (15.3 +/- 8.0 mm3/year). This effect was larger than that of limb alignment, which had a smaller and nonsignificant influence on overall wear rates (+4.5 +/- 11.6 mm3/year, p = 0.43). However, increased varus alignment was associated significantly with greater medial compartment wear in both the FB and rotating-platform designs (+1.7 +/- 1.3%/degrees and +1.8 +/- 1.6%/degrees). Our findings emphasize the importance of implant design and limb alignment on wear outcomes, providing reference data for improving implant performance and longevity.
|
|
|
Feinstein, A. D., Radica, M., Welbanks, L., Murray, C. A., Ohno, K., Coulombe, L. P., et al. (2023). Early Release Science of the exoplanet WASP-39b with JWST NIRISS. Nature, Early Access.
Abstract: The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy(1-4). However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality(5-9). Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 mu m in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.
|
|
|
Kirk, J., Rackham, B. V., MacDonald, R. J., Lopez-Morales, M., Espinoza, N., Lendl, M., et al. (2021). ACCESS and LRG-BEASTS: A Precise New Optical Transmission Spectrum of the Ultrahot Jupiter WASP-103b. Astron. J., 162(1), 34.
Abstract: We present a new ground-based optical transmission spectrum of the ultrahot Jupiter WASP-103b (Teq=2484
|
|
|
McGruder, C. D., Lopez-Morales, M., Kirk, J., Rackham, B. V., May, E., Ahrer, E. M., et al. (2023). ACCESS, LRG-BEASTS, and MOPSS: Featureless Optical Transmission Spectra of WASP-25b and WASP-124b. Astron. J., 166(3), 120.
Abstract: We present new optical transmission spectra for two hot Jupiters: WASP-25b (M = 0.56 M ( J ); R = 1.23 R ( J ); P = 3.76 days) and WASP-124b (M = 0.58 M ( J ); R = 1.34 R ( J ); P = 3.37 days), with wavelength coverages of 4200-9100 & ANGS; and 4570-9940 & ANGS;, respectively. These spectra are from the ESO Faint Object Spectrograph and Camera (v.2) mounted on the New Technology Telescope and Inamori-Magellan Areal Camera & Spectrograph on Magellan Baade. No strong spectral features were found in either spectra, with the data probing 4 and 6 scale heights, respectively. Exoretrievals and PLATON retrievals favor stellar activity for WASP-25b, while the data for WASP-124b did not favor one model over another. For both planets the retrievals found a wide range in the depths where the atmosphere could be optically thick (& SIM;0.4 & mu;-0.2 bars for WASP-25b and 1.6 & mu;-32 bars for WASP-124b) and recovered a temperature that is consistent with the planets' equilibrium temperatures, but with wide uncertainties (up to & PLUSMN;430 K). For WASP-25b, the models also favor stellar spots that are & SIM;500-3000 K cooler than the surrounding photosphere. The fairly weak constraints on parameters are owing to the relatively low precision of the data, with an average precision of 840 and 1240 ppm per bin for WASP-25b and WASP-124b, respectively. However, some contribution might still be due to an inherent absence of absorption or scattering in the planets' upper atmospheres, possibly because of aerosols. We attempt to fit the strength of the sodium signals to the aerosol-metallicity trend proposed by McGruder et al., and find WASP-25b and WASP-124b are consistent with the prediction, though their uncertainties are too large to confidently confirm the trend.
|
|