|
Berkovits, N., & Chandia, O. (2014). Simplified pure spinor b ghost in a curved heterotic superstring background. J. High Energy Phys., (6), 12 pp.
Abstract: Using the RNS-like fermionic vector variables introduced in arXiv:1305.0693, the pure spinor b ghost in a curved heterotic superstring background is easily constructed. This construction simplifies and completes the b ghost construction in a curved background of arXiv:1311.7012.
|
|
|
Chandia, O. (2014). The non-minimal heterotic pure spinor string in a curved background. J. High Energy Phys., (3), 16 pp.
Abstract: We study the non-minimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a non-trivial stress-energy tensor for the minimal and non-minimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.
|
|
|
Chandia, O., & Vallilo, B. C. (2015). C Ambitwistor pure spinor string in a type II supergravity background. J. High Energy Phys., (6), 15 pp.
Abstract: We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS(5) x S (5) background.
|
|
|
Chandia, O., & Vallilo, B. C. (2015). Non-minimal fields of the pure spinor string in general curved backgrounds. J. High Energy Phys., (2), 16 pp.
Abstract: We study the coupling of the non-minimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the non-minimal BRST charge.
|
|
|
Chandia, O., & Vallilo, B. C. (2016). On-shell type II supergravity from the ambitwistor pure spinor string. Class. Quantum Gravity, 33(18), 9 pp.
Abstract: We obtain all the type II supergravity constraints in the pure spinor ambit-wistor string by imposing consistency of local worldsheet gauge symmetries.
|
|
|
Chandia, O., Bevilaqua, L. I., & Vallilo, B. C. (2014). AdS pure spinor superstring in constant backgrounds. J. High Energy Phys., (6), 16 pp.
Abstract: In this paper we study the pure spinor formulation of the superstring in AdS(5) x S-5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.
|
|
|
Chandia, O., Linch, W. D., & Vallilo, B. C. (2011). Compactification of the heterotic pure spinor superstring II. J. High Energy Phys., (10), 22 pp.
Abstract: We study compactifications of the heterotic pure spinor superstring to six and four dimensions focusing on two simple Calabi-Yau orbifolds. We show that the correct spectrum can be reproduced only if, in the twisted sector, there remain exactly 5 and 2 pure spinor components untwisted, respectively. This naturally defines a “small” Hilbert space of untwisted variables. We point out that the cohomology of the reduced differential on this small Hilbert space can be used to describe the states in the untwisted sector, provided certain auxiliary constraints are defined. In dimension six, the mismatch between the number of pure spinor components in the small Hilbert space and the number of components of a six-dimensional pure spinor is interpreted as providing the projective measure on the analytic subspace (in the projective description) of harmonic superspace.
|
|
|
Donnay, L., Giribet, G., González, H., Puhm, A., & Rojas, F. (2023). Celestial open strings at one-loop. J. High Energy Phys., (10), 47.
Abstract: We study celestial amplitudes in string theory at one-loop. Celestial amplitudes describe scattering processes of boost eigenstates and relate to amplitudes in the more standard basis of momentum eigenstates through a Mellin transform. They are thus sensitive to both the ultraviolet and the infrared, which raises the question of how to appropriately take the field theory limit of string amplitudes in the celestial basis. We address this problem in the context of four-dimensional genus-one scattering processes of gluons in open string theory which reach the two-dimensional celestial sphere at null infinity. We show that the Mellin transform commutes with the adequate limit in the worldsheet moduli space and reproduces the celestial one-loop field theory amplitude expressed in the worldline formalism. The dependence on alpha ' continues to be a simple overall factor in one-loop celestial amplitudes albeit with a power that is shifted with respect to tree-level, thus making manifest that the dimensionless parameter g102/alpha ' 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {g}_{10}<^>2/{\alpha}<^>{\prime 3} $$\end{document} organizes the loop expansion in the celestial basis. The precise way in which the amplitudes scale with this parameter depends on the number of non-compact dimensions in such a way that in 4 dimensions the scaling with alpha ' does agree with that at tree-level.
|
|
|
Kalyaan, A., Pinilla, P., Krijt, S., Mulders, G. D., & Banzatti, A. (2021). Linking Outer Disk Pebble Dynamics and Gaps to Inner Disk Water Enrichment. Astrophys. J., 921(1), 84.
Abstract: Millimeter continuum imaging of protoplanetary disks reveals the distribution of solid particles and the presence of substructures (gaps and rings) beyond 5-10 au, while infrared (IR) spectra provide access to abundances of gaseous species at smaller disk radii. Building on recent observational findings of an anti-correlation between the inner disk water luminosity and outer dust disk radius, we aim here at investigating the dynamics of icy solids that drift from the outer disk and sublimate their ice inside the snow line, enriching the water vapor that is observed in the IR. We use a volatile-inclusive disk evolution model to explore a range of conditions (gap location, particle size, disk mass, and alpha viscosity) under which gaps in the outer disk efficiently block the inward drift of icy solids. We find that inner disk vapor enrichment is highly sensitive to the location of a disk gap, yielding for each particle size a radial “sweet spot” that reduces the inner disk vapor enrichment to a minimum. For pebbles of 1-10 mm in size, which carry the most mass, this sweet spot is at 7-15 au, suggesting that inner gaps may have a key role in reducing ice delivery to the inner disk and may not allow the formation of Earths and super-Earths. This highlights the importance of observationally determining the presence and properties of inner gaps in disks. Finally, we argue that the inner water vapor abundance can be used as a proxy for estimating the pebble drift efficiency and mass flux entering the inner disk.
|
|