Home | << 1 >> |
![]() |
Murhula, E., Hashan, M., & Otsuki, A. (2023). Effect of Solid Concentration and Particle Size on the Flotation Kinetics and Entrainment of Quartz and Hematite. Metals, 13(1), 53.
Abstract: Despite the importance of solid concentration in froth flotation, its effect on flotation kinetics and entrainment has rarely been studied. In this study, the flotation kinetics and entrainment in quartz and hematite single-mineral flotation systems as a function of the solid concentration and particle size were investigated using dodecylamine acetate as a collector. Kinetics modeling showed that the Gamma distribution achieved the best agreement with the experimental data, whereas the Classical and Klimpel models poorly fit the data (e.g., RMSE). The flotation rate constants (k) of both quartz and hematite at a higher solid concentration showed a concave shape, with the inflexion point at the middle-size range, whereas this trend altered at lower solid concentrations. Overall, quartz exhibited higher equilibrium recoveries (R-infinity) than hematite, which indicates its better overall rate constants. The degree of water recovery in both the quartz and hematite systems was higher at higher solid concentrations, but the hematite system exhibited higher water R-infinity than the quartz system, meaning that the entrainment of gangue could be higher in direct hematite flotation than the reverse one. Therefore, a higher solid concentration is associated with better overall quartz recovery and can reduce hematite loss by entrainment during reverse flotation. An inverse relationship was identified between the solid concentration and particle size in terms of the ratio of water recovery to the concentrate. In the reverse flotation of iron ore, refraining from achieving equilibrium recovery could help limit entrainment, but this was not necessarily the case in direct flotation. No entrainment model or method other than the Warren and Ross model approximated the overall trends of flotation at the finest size range (-38 mu m). However, extending the Warren method to polynomial distribution led to an improved fit with the experimental results. In addition to the solid concentration, particle density and size were revealed to be key to developing new entrainment models. Finally, after the fast recovery period (true flotation) was over, the slow recoveries were mainly driven by the slow-floating water fraction.
|
Shanmugaraj, K., Mangalaraja, R. V., Campos, C. H., Singh, D. P., Aepuru, R., Thirumurugan, A., et al. (2023). Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods. Inorg. Chem. Commun., 149, 110406.
Abstract: Our environment is greatly endangered by the accumulation of various toxic organic pollutants that are continually produced through unavoidable human needs and the industrialization process. Herein, we report highly active gold nanoparticles (AuNPs) immobilized on two-dimensional (2D) TiO2 nanosheets (AuNPs-TiO2NSs) as a catalyst for the catalytic reduction of nitroarenes (NAs) such as 4-nitroaniline (4-NA), 4-(4-nitrophenyl)morpholine (4-NM), 4-(2-fluoro-4-nitrophenyl)morpholine (4-FNM) and rhodamine B (RhB) dye in the presence of sodium borohydride (NaBH4) medium. Initially, TiO2NSs are prepared by the hydrothermal treatment followed by the modification with 3-aminopropyl-trimethoxysilane (APTMS) coupling agent for strong anchoring of the AuNPs. HR-TEM images exhibit that AuNPs (2.30 +/- 0.06 nm) are immobilized on the surface of ultrathin 2-dimensional TiO2NSs. AuNPs-TiO2NSs catalyst shows excellent catalytic activity towards the reduction of various NAs (4-NA, 4-NM and 4-FNM) and RhB dye with maximum conversion efficiency of >98 %. Moreover, the pseudo-first-order rate constants are estimated as 5.50 x 10- 3 s- 1, 7.20 x 10- 3 s- 1, 6.40 x 10-3 s- 1 and 4.30 x 10-3 s- 1 for the reduction of 4-NA, 4-NM, 4-FNM, and RhB, respectively. For large-scale in-dustrial applications, AuNPs-TiO2NSs catalyst embedded in a continuous flow-fixed bed reactor for the catalytic reduction of 4-NA and RhB dye under optimized reaction conditions. AuNPs-TiO2NSs catalyst shows high con-version rates for 4-NA (>99 %) and RhB (>99%) along with excellent recyclability over 12 cycles in continuous flow fixed bed reactor. The mechanism of synthetic pathway and catalytic reduction of NAs and RhB dye over AuNPs-TiO2NSs catalyst are also proposed. This study may lead to the use AuNPs-TiO2NSs catalyst with superior recyclable catalytic efficiency in various catalytic reactions.
|