toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Aranis, A., de la Cruz, R., Montenegro, C., Ramirez, M., Caballero, L., Gomez, A., et al. (2022). Meta-Estimation of Araucanian Herring, Strangomera bentincki (Norman, 1936), Biological Indicators in the Central-South Zone of Chile (32 degrees-47 degrees LS). Front. Mar. Sci., 9, 886321.
toggle visibility
Araya, H., Bahamonde, N., Fermin, L., Roa, T., & Torres, S. (2023). ON THE CONSISTENCY OF LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE JITTERED CASE. Stat. Sin., 33(1), 331–351.
toggle visibility
Araya, H., Bahamonde, N., Fermin, L., Roa, T., & Torres, S. (2023). ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE. Stat. Sin., 33(1), 1–26.
toggle visibility
de la Cruz, R., Padilla, O., Valle, M. A., & Ruz, G. A. (2021). Modeling Recidivism through Bayesian Regression Models and Deep Neural Networks. Mathematics, 9(6), 639.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2017). Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers. Neurocomputing, 226, 109–116.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2018). A non-iterative method for pruning hidden neurons in neural networks with random weights. Appl. Soft. Comput., 70, 1109–1121.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2019). Noise reduction for near-infrared spectroscopy data using extreme learning machines. Eng. Appl. Artif. Intell., 79, 13–22.
toggle visibility
Hughes, S., Moreno, S., Yushimito, W. F., & Huerta-Canepa, G. (2019). Evaluation of machine learning methodologies to predict stop delivery times from GPS data. Transp. Res. Pt. C-Emerg. Technol., 109, 289–304.
toggle visibility
Munoz-Herrera, S., & Suchan, K. (2022). Constrained Fitness Landscape Analysis of Capacitated Vehicle Routing Problems. Entropy, 24(1), 53.
toggle visibility
Simon, F., Ordonez, J., Reddy, T. A., Girard, A., & Muneer, T. (2016). Developing multiple regression models from the manufacturer's ground-source heat pump catalogue data. Renew. Energy, 95, 413–421.
toggle visibility
Song, J. W., Wei, P. F., Valdebenito, M. A., Faes, M., & Beer, M. (2021). Data-driven and active learning of variance-based sensitivity indices with Bayesian probabilistic integration. Mech. Syst. Sig. Process., 163, 108106.
toggle visibility
Vega-Briones, J., de Jong, S., Galleguillos, M., & Wanders, N. (2023). Identifying driving processes of drought recovery in the southern Andes natural catchments. J. Hydrol. Reg. Stud., 47, 101369.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print