Home | << 1 >> |
![]() |
Go, R. S., Munoz, F. D., & Watson, J. P. (2016). Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards. Appl. Energy, 183, 902–913.
Abstract: Worldwide, environmental regulations such as Renewable Portfolio Standards (RPSs) are being broadly adopted to promote renewable energy investments. With corresponding increases in renewable energy deployments, there is growing interest in grid-scale energy storage systems (ESS) to provide the flexibility needed to efficiently deliver renewable power to consumers. Our contribution in this paper is to introduce a unified generation, transmission, and bulk ESS expansion planning model subject to an RPS constraint, formulated as a two-stage stochastic mixed-integer linear program (MILP) optimization model, which we then use to study the impact of co-optimization and evaluate the economic interaction between investments in these three asset classes in achieving high renewable penetrations. We present numerical case studies using the 24-bus IEEE RTS-96 test system considering wind and solar as available renewable energy resources, and demonstrate that up to $180 million/yr in total cost savings can result from the co-optimization of all three assets, relative to a situation in which no ESS investment options are available. Surprisingly, we find that co-optimized bulk ESS investments provide significant economic value through investment deferrals in transmission and generation capacity, but very little savings in operational cost. Finally, we observe that planning transmission and generation infrastructure first and later optimizing ESS investments as is common in industry captures at most 1.7% ($3 million/yr) of the savings that result from co-optimizing all assets simultaneously. (C) 2016 Elsevier Ltd. All rights reserved.
|
Perez, A. P., Sauma, E. E., Munoz, F. D., & Hobbs, B. F. (2016). The Economic Effects of Interregional Trading of Renewable Energy Certificates in the US WECC. Energy J., 37(4), 267–295.
Abstract: In the U.S., individual states enact Renewable Portfolio Standards (RPSs) for renewable electricity production with little coordination. Each state imposes restrictions on the amounts and locations of qualifying renewable generation. Using a co-optimization (transmission and generation) planning model, we quantify the long run economic benefits of allowing flexibility in the trading of Renewable Energy Credits (RECs) among the U.S. states belonging to the Western Electricity Coordinating Council (WECC). We characterize flexibility in terms of the amount and geographic eligibility of out-of-state RECs that can be used to meet a state's RPS goal. Although more trade would be expected to have economic benefits, neither the size of these benefits nor the effects of such trading on infrastructure investments, CO2 emissions and energy prices have been previously quantified. We find that up to 90% of the economic benefits are captured if approximately 25% of unbundled RECs are allowed to be acquired from out of state. Furthermore, increasing REC trading flexibility does not necessarily result in either higher transmission investment costs or a substantial impact on CO2 emissions. Finally, increasing REC trading flexibility decreases energy prices in some states and increases them elsewhere, while the WECC-wide average energy price decreases.
|