|
Girard, A., Muneer, T., & Caceres, G. (2014). A validated design simulation tool for passive solar space heating: Results from a monitored house in West Lothian, Scotland. Indoor Built Environ., 23(3), 353–372.
Abstract: Determining the availability of renewable sources on a particular site would result in increasing the efficiency of buildings through appropriate design. The overall aim of the project is to develop a pioneering software tool allowing the assessment of possible energy sources for any building design project. The package would allow the user to simulate the efficiency of the Passive Solar Space Heating referred in the Low and Zero Carbon Energy Sources (LZCES) Strategic Guide stated by the Office of the Deputy Prime Minister (2006) and the Building Regulations. This research paper presents the tool for modelling the passive solar sources availability in relation to low-carbon building. A 3-month experimental set up monitoring a solar house in West Lothian, Scotland, was also undertaken to validate the simulation tool. Experimental and simulation results were found in good agreement following a one-to-one relationship demonstrating the ability of the newly developed tool to assess potential solar gain available for buildings. This modelling tool is highly valuable in consideration of the part L of the Building Regulations (updated in 2010).
|
|
|
Munoz, F. D., Pumarino, B. J., & Salas, I. A. (2017). Aiming low and achieving it: A long-term analysis of a renewable policy in Chile. Energy Econ., 65, 304–314.
Abstract: We use an Integrated Resource Planning model to assess the costs of meeting a 70% renewables target by 2050 in Chile. This model is equivalent to a long-term equilibrium in electricity and renewable energy certificate (REC) markets under perfect competition. We consider different scenarios of demand growth, resource eligibility (e.g., large hydropower), and transmission system configuration. Our numerical results indicate that the sole characteristics of the available renewable resources in the country and reductions in technology costs will provide sufficient economic incentives for private investors to supply a fraction of renewables larger than 70% for a broad range of scenarios, meaning that the proposed target will likely remain a symbolic government effort. Increasing transmission capacity between the northern and central interconnected systems could reduce total system cost by $400 million per year and increase the equilibrium share of non conventional renewable energy (NCRE) in the system from 45% to 52%, without the need for any additional policy incentive. Surprisingly, imposing a 70% of NCRE by 2050 results in a REC price lower than the noncompliance fine used for the current target of 20% of NCRE by 2025, the latter of which represents the country's maximum willingness to pay for the attributes of electricity supplied from NCRE resources. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Nasirov, S., Agostini, C., Silva, C., & Caceres, G. (2018). Renewable energy transition: a market-driven solution for the energy and environmental concerns in Chile. Clean Technol. Environ. Policy, 20(1), 3–12.
Abstract: Chile is undergoing a remarkable energy matrix transition to renewable energy. Renewable energies are expanding extraordinarily fast, exceeding earlier predictions. As a result, the country is expected to meet its 2025 goal of generating 20% of its electricity from renewable energy sources quite before. Chile has become one of the first countries in the world with subsidy-free markets, where renewable projects compete directly with other conventional sources. Favorable market conditions and successful policy reforms were keys to fostering this renewable energy development. Although the country has achieved a substantial growth in renewable energy investment in a relatively short period of time, this optimism should be treated with caution. A successful transition requires a combination of a clear decision making, persistent and consistent government policies, and a clear commitment to tackling challenges to accommodate renewable energy in the power system. In this context, this paper analyses the Chilean renewable industry and the required government policies to succeed in this transition. For this purpose, we identify several critical factors that have attracted and that could attract investment to the renewable energy sector and propose key recommendations to effectively address the major challenges faced for the future development of the industry.
|
|
|
Nasirov, S., Agostini, C. A., & Silva, C. (2017). An assessment of the implementation of renewable energy sources in the light of concerns over Chilean policy objectives. Energy Sources Part B, 12(8), 715–721.
Abstract: In recent years, the development of renewable energies in the electricity market in Chile has gained significant attention as a key alternative for energy sources diversification and meeting three key policy objectives: energy availability, environmental protection, and social-economic development. This study aims to assess various renewable energy sources in order to select suitable sources to accomplish the different policy goals in a country like Chile. For this purpose, a Multi-Criteria Decision Analysis (MCDA) method is employed to evaluate the relative importance of policy objectives. In addition, a sensitivity analysis is conducted to build various different policy scenarios measuring the impact of variations on the current weights of the decision criteria. The results show that solar, wind, and small hydro are the preferred sources in the Chilean renewable energy portfolio, maximizing the objective of meeting the three policy goals at the same time.
|
|
|
Nasirov, S., Cruz, E., Agostini, C. A., & Silva, C. (2019). Policy Makers' Perspectives on the Expansion of Renewable Energy Sources in Chile's Electricity Auctions. Energies, 12(21), 17 pp.
Abstract: Chile has become one of the first few countries where renewable sources compete directly with conventional generation in price-based auctions. Moreover, the results of energy auctions during the last few years show a remarkable transition from conventional fossil fuels to renewable energies. In fact, the energy auction in 2017, to provide energy to customers from distribution companies, achieved a massive expansion in renewable technology at one of the lowest prices in the world. These positive results prompted the question if such results were permanent or temporal due to factors with limited effects. In this regard, this paper studies the key factors that drove the significant rise of renewable technologies in Chilean energy auctions, obtaining valuable lessons for regulators, not only in Chile, but also in the region and the world. For this purpose, we considered a well-proven method based on a hybrid multicriteria decision-making model to examine and prioritize the main drivers of the expansion of renewables in auctions. The results showed that some specific characteristics of the auction design, particularly the hourly supply blocks, the lead time for project construction, and contract duration, were the most significant drivers for the expansion of renewables in energy auctions. Moreover, the results showed that, provided that the auction design accommodates for such drivers, solar energy ends up as the most attractive technology in the Chilean auctions. The research also shows the main findings are robust by the application of a probabilistic sensitivity analysis.
|
|
|
O'Ryan, R., Nasirov, S., & Alvarez-Espinosa, A. (2020). Renewable energy expansion in the Chilean power market: A dynamic general equilibrium modeling approach to determine CO2 emission baselines. J. Clean Prod., 247, 11 pp.
Abstract: Over the last decade, a high dependency on carbon-intensive fuels in the Chilean power sector has led to environmental concerns, particularly regarding rapid growth in CO2 emissions. More recently, the power sector has experienced significant structural changes with a rapid expansion of renewables in the energy matrix, and this trend is expected to cause significant variations in future CO2-emission baseline scenarios. To investigate the economy-wide impact of renewable energy expansions in Chile's energy mix, this research, based on a Computable General Equilibrium (CGE) model, examines different CO2 emission baseline scenarios. However, because traditional CGE modeling approaches cannot capture the impact of a sector's recent structural changes, we present a step-by-step approach to incorporate different energy matrices from an external engineering bottom-up model into the CGE model. The results indicate that the Business as Usual (BAU) scenario, in which structural changes are not considered, significantly overstates expected emissions. Conversely, considering structural changes in our CGE model shows Chile advancing towards its declared Nationally Determined Contribution (NDC) to reduce greenhouse gas emissions. Furthermore, the methodology implemented in the study has the advantage of being a simple integrated approach that is coherent with current modeling capacities in many developing contexts. (C) 2019 Elsevier Ltd. All rights reserved.
|
|
|
Perez, A. P., Sauma, E. E., Munoz, F. D., & Hobbs, B. F. (2016). The Economic Effects of Interregional Trading of Renewable Energy Certificates in the US WECC. Energy J., 37(4), 267–295.
Abstract: In the U.S., individual states enact Renewable Portfolio Standards (RPSs) for renewable electricity production with little coordination. Each state imposes restrictions on the amounts and locations of qualifying renewable generation. Using a co-optimization (transmission and generation) planning model, we quantify the long run economic benefits of allowing flexibility in the trading of Renewable Energy Credits (RECs) among the U.S. states belonging to the Western Electricity Coordinating Council (WECC). We characterize flexibility in terms of the amount and geographic eligibility of out-of-state RECs that can be used to meet a state's RPS goal. Although more trade would be expected to have economic benefits, neither the size of these benefits nor the effects of such trading on infrastructure investments, CO2 emissions and energy prices have been previously quantified. We find that up to 90% of the economic benefits are captured if approximately 25% of unbundled RECs are allowed to be acquired from out of state. Furthermore, increasing REC trading flexibility does not necessarily result in either higher transmission investment costs or a substantial impact on CO2 emissions. Finally, increasing REC trading flexibility decreases energy prices in some states and increases them elsewhere, while the WECC-wide average energy price decreases.
|
|