Home | << 1 >> |
Agostini, C. A., Armijo, F. A., Silva, C., & Nasirov, S. (2021). The role of frequency regulation remuneration schemes in an energy matrix with high penetration of renewable energy. Renew. Energy, 171, 1097–1114.
Abstract: Renewable energies (RE) in Chile and around the world have experienced outstanding growth in recent years. However, RE technologies such as solar photovoltaic and wind generate an imbalance between generation (offer) and consumption (demand) because of their intermittent and variable nature. Moreover, RE & rsquo;s natural variability makes it necessary for conventional technologies to play a significant role in adjusting for the imbalance in the electric system frequency. As variable RE penetration grows, the need for frequency regulation will increase and, depending on how those higher costs are financed, this could lead to a disincentive to invest in conventional plants that provide that service. In this paper we study the impact of increased photovoltaic energy penetration, the leading RE in Chile, on the profitability of different conventional generation technologies. Specifically, we analyze the role that the frequency control remuneration mechanism has on that impact. For this purpose, four different solar photovoltaic penetration scenarios are simulated in Chile & rsquo;s Northern System, comparing two payment criteria for frequency regulation services: i) a cost-based pricing system whose payments relate to the incurred costs and ii) a market-based pricing system where the marginal cost of providing the services is paid. The results show that as installed photovoltaic capacity increases, the average marginal cost of energy (operation cost) decreases due to a displacement of more expensive power plants, but at the same time, investment cost may increase. In the long run, contract prices change as a result of falling operational costs and rising investment cost, resulting in changes in the profitability of all technologies. Finally, while both cost-based and market-based systems reward the ability to regulate frequency, the technologies performing the regulation receive different payments for the service, affecting both their profitability and the incentives for investment.
Keywords: Renewable energy; Frequency control; Ancillary services; Chile
|
Barroso, L., Munoz, F. D., Bezerra, B., Rudnick, H., & Cunha, G. (2021). Zero-Marginal-Cost Electricity Market Designs: Lessons Learned From Hydro Systems in Latin America Might Be Applicable for Decarbonization. IEEE Power Energy Mag., 19(1), 64–73.
Abstract: Large reductions in the cost of renewable energy technologies, particularly wind and solar, as well as various instruments used to achieve decarbonization targets (e.g., renewable mandates, renewable auctions, subsidies, and carbon pricing mechanisms) are driving the rapid growth of investments in these generation technologies worldwide.
|
Girard, A., Muneer, T., & Caceres, G. (2014). A validated design simulation tool for passive solar space heating: Results from a monitored house in West Lothian, Scotland. Indoor Built Environ., 23(3), 353–372.
Abstract: Determining the availability of renewable sources on a particular site would result in increasing the efficiency of buildings through appropriate design. The overall aim of the project is to develop a pioneering software tool allowing the assessment of possible energy sources for any building design project. The package would allow the user to simulate the efficiency of the Passive Solar Space Heating referred in the Low and Zero Carbon Energy Sources (LZCES) Strategic Guide stated by the Office of the Deputy Prime Minister (2006) and the Building Regulations. This research paper presents the tool for modelling the passive solar sources availability in relation to low-carbon building. A 3-month experimental set up monitoring a solar house in West Lothian, Scotland, was also undertaken to validate the simulation tool. Experimental and simulation results were found in good agreement following a one-to-one relationship demonstrating the ability of the newly developed tool to assess potential solar gain available for buildings. This modelling tool is highly valuable in consideration of the part L of the Building Regulations (updated in 2010).
|
Munoz, F. D., Pumarino, B. J., & Salas, I. A. (2017). Aiming low and achieving it: A long-term analysis of a renewable policy in Chile. Energy Econ., 65, 304–314.
Abstract: We use an Integrated Resource Planning model to assess the costs of meeting a 70% renewables target by 2050 in Chile. This model is equivalent to a long-term equilibrium in electricity and renewable energy certificate (REC) markets under perfect competition. We consider different scenarios of demand growth, resource eligibility (e.g., large hydropower), and transmission system configuration. Our numerical results indicate that the sole characteristics of the available renewable resources in the country and reductions in technology costs will provide sufficient economic incentives for private investors to supply a fraction of renewables larger than 70% for a broad range of scenarios, meaning that the proposed target will likely remain a symbolic government effort. Increasing transmission capacity between the northern and central interconnected systems could reduce total system cost by $400 million per year and increase the equilibrium share of non conventional renewable energy (NCRE) in the system from 45% to 52%, without the need for any additional policy incentive. Surprisingly, imposing a 70% of NCRE by 2050 results in a REC price lower than the noncompliance fine used for the current target of 20% of NCRE by 2025, the latter of which represents the country's maximum willingness to pay for the attributes of electricity supplied from NCRE resources. (C) 2017 Elsevier B.V. All rights reserved.
|
Nasirov, S., Agostini, C., Silva, C., & Caceres, G. (2018). Renewable energy transition: a market-driven solution for the energy and environmental concerns in Chile. Clean Technol. Environ. Policy, 20(1), 3–12.
Abstract: Chile is undergoing a remarkable energy matrix transition to renewable energy. Renewable energies are expanding extraordinarily fast, exceeding earlier predictions. As a result, the country is expected to meet its 2025 goal of generating 20% of its electricity from renewable energy sources quite before. Chile has become one of the first countries in the world with subsidy-free markets, where renewable projects compete directly with other conventional sources. Favorable market conditions and successful policy reforms were keys to fostering this renewable energy development. Although the country has achieved a substantial growth in renewable energy investment in a relatively short period of time, this optimism should be treated with caution. A successful transition requires a combination of a clear decision making, persistent and consistent government policies, and a clear commitment to tackling challenges to accommodate renewable energy in the power system. In this context, this paper analyses the Chilean renewable industry and the required government policies to succeed in this transition. For this purpose, we identify several critical factors that have attracted and that could attract investment to the renewable energy sector and propose key recommendations to effectively address the major challenges faced for the future development of the industry.
Keywords: Energy transition; Energy policy; Renewable energy technologies; Chile
|
Nasirov, S., Agostini, C. A., & Silva, C. (2017). An assessment of the implementation of renewable energy sources in the light of concerns over Chilean policy objectives. Energy Sources Part B, 12(8), 715–721.
Abstract: In recent years, the development of renewable energies in the electricity market in Chile has gained significant attention as a key alternative for energy sources diversification and meeting three key policy objectives: energy availability, environmental protection, and social-economic development. This study aims to assess various renewable energy sources in order to select suitable sources to accomplish the different policy goals in a country like Chile. For this purpose, a Multi-Criteria Decision Analysis (MCDA) method is employed to evaluate the relative importance of policy objectives. In addition, a sensitivity analysis is conducted to build various different policy scenarios measuring the impact of variations on the current weights of the decision criteria. The results show that solar, wind, and small hydro are the preferred sources in the Chilean renewable energy portfolio, maximizing the objective of meeting the three policy goals at the same time.
Keywords: Chile; MCDA; policy objectives; renewable energy; sensitivity analysis
|
Nasirov, S., Cruz, E., Agostini, C. A., & Silva, C. (2019). Policy Makers' Perspectives on the Expansion of Renewable Energy Sources in Chile's Electricity Auctions. Energies, 12(21), 17 pp.
Abstract: Chile has become one of the first few countries where renewable sources compete directly with conventional generation in price-based auctions. Moreover, the results of energy auctions during the last few years show a remarkable transition from conventional fossil fuels to renewable energies. In fact, the energy auction in 2017, to provide energy to customers from distribution companies, achieved a massive expansion in renewable technology at one of the lowest prices in the world. These positive results prompted the question if such results were permanent or temporal due to factors with limited effects. In this regard, this paper studies the key factors that drove the significant rise of renewable technologies in Chilean energy auctions, obtaining valuable lessons for regulators, not only in Chile, but also in the region and the world. For this purpose, we considered a well-proven method based on a hybrid multicriteria decision-making model to examine and prioritize the main drivers of the expansion of renewables in auctions. The results showed that some specific characteristics of the auction design, particularly the hourly supply blocks, the lead time for project construction, and contract duration, were the most significant drivers for the expansion of renewables in energy auctions. Moreover, the results showed that, provided that the auction design accommodates for such drivers, solar energy ends up as the most attractive technology in the Chilean auctions. The research also shows the main findings are robust by the application of a probabilistic sensitivity analysis.
Keywords: renewable energy; auctions; regulator's perspective; Chile
|
Navarro, A., Favereau, M., Lorca, A., Olivares, D., & Negrete-Pincetic, M. (2024). Medium-term stochastic hydrothermal scheduling with short-term operational effects for large-scale power and water networks. Appl. Energy, 358, 122554.
Abstract: The high integration of variable renewable sources in electric power systems entails a series of challenges inherent to their intrinsic variability. A critical challenge is to correctly value the water available in reservoirs in hydrothermal systems, considering the flexibility that it provides. In this context, this paper proposes a medium -term multistage stochastic optimization model for the hydrothermal scheduling problem solved with the stochastic dual dynamic programming algorithm. The proposed model includes operational constraints and simplified mathematical expressions of relevant operational effects that allow more informed assessment of the water value by considering, among others, the flexibility necessary for the operation of the system. In addition, the hydrological uncertainty in the model is represented by a vector autoregressive process, which allows capturing spatio-temporal correlations between the different hydro inflows. A calibration method for the simplified mathematical expressions of operational effects is also proposed, which allows a detailed shortterm operational model to be correctly linked to the proposed medium -term linear model. Through extensive experiments for the Chilean power system, the results show that the difference between the expected operating costs of the proposed medium -term model, and the costs obtained through a detailed short-term operational model was only 0.1%, in contrast to the 9.3% difference obtained when a simpler base model is employed. This shows the effectiveness of the proposed approach. Further, this difference is also reflected in the estimation of the water value, which is critical in water shortage situations.
|
O'Ryan, R., Nasirov, S., & Alvarez-Espinosa, A. (2020). Renewable energy expansion in the Chilean power market: A dynamic general equilibrium modeling approach to determine CO2 emission baselines. J. Clean Prod., 247, 11 pp.
Abstract: Over the last decade, a high dependency on carbon-intensive fuels in the Chilean power sector has led to environmental concerns, particularly regarding rapid growth in CO2 emissions. More recently, the power sector has experienced significant structural changes with a rapid expansion of renewables in the energy matrix, and this trend is expected to cause significant variations in future CO2-emission baseline scenarios. To investigate the economy-wide impact of renewable energy expansions in Chile's energy mix, this research, based on a Computable General Equilibrium (CGE) model, examines different CO2 emission baseline scenarios. However, because traditional CGE modeling approaches cannot capture the impact of a sector's recent structural changes, we present a step-by-step approach to incorporate different energy matrices from an external engineering bottom-up model into the CGE model. The results indicate that the Business as Usual (BAU) scenario, in which structural changes are not considered, significantly overstates expected emissions. Conversely, considering structural changes in our CGE model shows Chile advancing towards its declared Nationally Determined Contribution (NDC) to reduce greenhouse gas emissions. Furthermore, the methodology implemented in the study has the advantage of being a simple integrated approach that is coherent with current modeling capacities in many developing contexts. (C) 2019 Elsevier Ltd. All rights reserved.
Keywords: CGE model; Renewable energy; CO2 emissions; Chile
|
Perez, A. P., Sauma, E. E., Munoz, F. D., & Hobbs, B. F. (2016). The Economic Effects of Interregional Trading of Renewable Energy Certificates in the US WECC. Energy J., 37(4), 267–295.
Abstract: In the U.S., individual states enact Renewable Portfolio Standards (RPSs) for renewable electricity production with little coordination. Each state imposes restrictions on the amounts and locations of qualifying renewable generation. Using a co-optimization (transmission and generation) planning model, we quantify the long run economic benefits of allowing flexibility in the trading of Renewable Energy Credits (RECs) among the U.S. states belonging to the Western Electricity Coordinating Council (WECC). We characterize flexibility in terms of the amount and geographic eligibility of out-of-state RECs that can be used to meet a state's RPS goal. Although more trade would be expected to have economic benefits, neither the size of these benefits nor the effects of such trading on infrastructure investments, CO2 emissions and energy prices have been previously quantified. We find that up to 90% of the economic benefits are captured if approximately 25% of unbundled RECs are allowed to be acquired from out of state. Furthermore, increasing REC trading flexibility does not necessarily result in either higher transmission investment costs or a substantial impact on CO2 emissions. Finally, increasing REC trading flexibility decreases energy prices in some states and increases them elsewhere, while the WECC-wide average energy price decreases.
|
Simon, F., Girard, A., Krotki, M., & Ordonez, J. (2021). Modelling and simulation of the wood biomass supply from the sustainable management of natural forests. J. Clean. Prod., 282, 124487.
Abstract: Wood biomass is an important energy resource, which can contribute to reduce the dependence on fossil fuels. The research undertakes the microeconomic approach to estimate the technical availability and operational costs of woody biomass production with a higher level of precision than other models present in the literature, as it considers the entire supply chain of the sustainable management of natural forests. This study introduces a tool, which is applied to estimate supply curves and costs of wood biomass extraction from natural forests in the 7th Region of Chile. The simulation indicates that 531,015 tons/year of wood biomass is available in natural forests of the Region under study, with extraction costs ranging from 24.51 to 56.68 US$/ton, or an average total cost of 40.97 US$/ton. The parametric analysis revealed that the maximum admissible distance to the nearest transport route and the transportation costs are the two most influential variables in the estimation of wood biomass supply and cost. Reducing the admissible distance from 5 km to 1 km reduced the availability of biomass by 80%, while a variation of +/- 50% of transportation costs translated into +/- 18.3% variation of total extraction costs.
The proposed method can be used to identify the technical-economic potential of wood biomass from natural forests in any commune, province, region, or country; as it has the flexibility to allow tests with multiple scenarios and parameters depending on the specific characteristics of the area to be analysed. Essentially, the purpose of this tool is to serve the assessment processes of the identification of new wood biomass resources, allowing decision makers to increase the potential of sustainable and cost-effective woody biomass for heat and electricity generation, and at the same time reduce greenhouse gas emissions and the dependence on fossil fuels. |
Verastegui, F., Lorca, A., Olivares, D., & Negrete-Pincetic, M. (2021). Optimization-Based Analysis of Decarbonization Pathways and Flexibility Requirements in Highly Renewable Power Systems. Energy, 234, 121242.
Abstract: Several countries are adopting plans to reduce the contaminant emissions from the energy sector through renewable energy integration and restrictions on fossil fuel generation. This process poses important computational and methodological challenges on expansion planning modeling due to the operational details needed for a proper analysis. In this context, this paper develops a planning model including an effective representation of the operational aspects of the system to understand the key role of flexible resources under strong decarbonization processes in highly renewable power systems. A case study is developed for the Chilean power system, which is currently undergoing an ambitious coal phase-out process, including the analysis of a scenario that leads to a completely renewable generation mix. The results show that highly renewable generation mixes are feasible, but rely on an effective balance of the key flexibility attributes of the system including ramping, storage, and transmission capacities. Further, such balance allows for faster decarbonization goals to remain in a similar cost range, through the deployment of flexible capacity in earlier stages of the planning horizon.
|
Villalobos, C., Negrete-Pincetic, M., Figueroa, N., Lorca, A., & Olivares, D. (2021). The impact of short-term pricing on flexible generation investments in electricity markets. Energy Econ., 98, 105213.
Abstract: The massive growth in the integration of variable renewable energy sources is producing several challenges in the operation of power systems and its associated markets. In this context, flexibility has become a critical attribute to allow the system to react to changes in generation or demand levels. Thus, it is critical for market signals at both short and long term scales to include flexibility features, to align agents' incentives with systemic flexibility requirements. In this paper, different pricing schemes for short-term markets are studied, based on various relaxations of the unit commitment problem, including convex-hull approximations, with the aim of representing operational flexibility requirements in a more explicit way. Extensive simulations illustrate the performance of the proposed schemes, as compared to conventional ones, in terms of the capability of the system to properly incentivize flexibility attributes, resulting in better agents' cost recovery and more variable renewable energy utilization. The results show that short-term pricing schemes considered improve the long-term signals for flexible investments but additional changes to market design are still required. Thus, there is a need to revisit historical practices for pricing rules by incorporating additional flexibility-related attributes into them. Several alternatives are discussed and policy recommendations based on these considerations are provided.
|