Home | << 1 >> |
![]() |
Calderon, F. I., Lozada, A., Borquez-Paredes, D., Olivares, R., Davalos, E. J., Saavedra, G., et al. (2020). BER-Adaptive RMLSA Algorithm for Wide-Area Flexible Optical Networks. IEEE Access, 8, 128018–128031.
Abstract: Wide-area optical networks face significant transmission challenges due to the relentless growth of bandwidth demands experienced nowadays. Network operators must consider the relationship between modulation format and maximum reach for each connection request due to the accumulation of physical layer impairments in optical fiber links, to guarantee a minimum quality of service (QoS) and quality of transmission (QoT) to all connection requests. In this work, we present a BER-adaptive solution to solve the routing, modulation format, and spectrum assignment (RMLSA) problem for wide-area elastic optical networks. Our main goal is to maximize successful connection requests in wide-area networks while choosing modulation formats with the highest efficiency possible. Consequently, our technique uses an adaptive bit-error-rate (BER) threshold to achieve communication with the best QoT in the most efficient manner, using the strictest BER value and the modulation format with the smallest bandwidth possible. Additionally, the proposed algorithm relies on 3R regeneration devices to enable long-distances communications if transparent communication cannot be achieved. We assessed our method through simulations for various network conditions, such as the number of regenerators per node, traffic load per user, and BER threshold values. In a scenario without regenerators, the BER-Adaptive algorithm performs similarly to the most relaxed fixed BER threshold studied in blocking probability. However, it ensures a higher QoT to most of the connection requests. The proposed algorithm thrives with the use of regenerators, showing the best performance among the studied solutions, enabling long-distance communications with a high QoT and low blocking probability.
|
Deacon, R. M. J., Hurley, M. J., Rebolledo, C. M., Snape, M., Altimiras, F. J., Farias, L., et al. (2017). Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. Genes Brain Behav., 16(7), 1–10.
Abstract: Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders, fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism. Progress in basic neuroscience has led to identification of molecular targets for treatment in FXS; however, there is a gap in translation to targeted therapies in humans. This study introduces a novel therapeutic target for FXS, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a transcription factor known to induce expression of over 100 cytoprotective genes. We also show that NNZ2566, a drug that has successfully completed a phase 2 clinical trial in FXS, is effective in modulating this target in FXS, partially reversing the FXS phenotype; NNZ2566 has a therapeutic role as Nrf2 activator. Effectively, treatment with NNZ2566 normalizes the translocation of Nrf2 to the nucleus, inducing expression of numerous oxidative stress-related genes including NQO1 (NAD(P) H dehydrogenase quinone 1), GST-alpha 1 (glutathione S-transferase alpha-1) and EH (epoxide hydrolase) and has a knockdown effect on E-cadherin. In summary, the Nrf2/ARE (antioxidant response element) pathway appears to be a novel promising therapeutic target for FXS and NNZ2566 appears to be acting as an activator of the Nrf2/ARE pathway and suggests a potential benefit across multiple symptoms that could be associated with the pathobiological processes underlying FXS.
|
Feinstein, A. D., Radica, M., Welbanks, L., Murray, C. A., Ohno, K., Coulombe, L. P., et al. (2023). Early Release Science of the exoplanet WASP-39b with JWST NIRISS. Nature, Early Access.
Abstract: The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy(1-4). However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality(5-9). Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 mu m in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.
Keywords: EXOMOL LINE LISTS; THERMAL STRUCTURE; MODEL; ABUNDANCES; ATMOSPHERE; RETRIEVAL; SCATTERING; EFFICIENT; SPECTRUM; METHANE
|
Leiva, A., Pavez, N., Beghelli, A., & Olivares, R. (2015). A Joint RSA Algorithm for Dynamic Flexible Optical Networking. IEEE Latin Am. Trans., 13(11), 3531–3537.
Abstract: We propose a novel algorithm to solve the Routing and Spectrum Allocation (RSA) problem in dynamic flexible grid optical networks. Unlike most previous proposals, the algorithm solves the R and SA problems jointly by exhaustively searching the solution space and taking the network state into account. As a result, the shortest possible path with enough spectrum availability is allocated to establish the connections. Simulation results show that, in terms of blocking ratio, our proposal significantly outperforms previously proposed algorithms. In some cases, the performance is better by more than one order of magnitude.
|
McGruder, C. D., Lopez-Morales, M., Brahm, R., & Jordan, A. (2023). The Similar Seven: A Set of Very Alike Exoplanets to Test Correlations between System Parameters and Atmospheric Properties. Astrophys. J. Lett., 944(2), L56.
Abstract: Studies of exoplanetary atmospheres have found no definite correlations between observed high-altitude aerosols and other system parameters. This could be, in part, because of the lack of homogeneous exoplanet samples for which specific parameters can be isolated and inspected. Here, we present a set of seven exoplanets with very similar system parameters. We analyze existing photometric time series, Gaia parallax, and high-resolution spectroscopic data to produce a new set of homogeneous stellar, planetary, and orbital parameters for these systems. With this, we confirm that most measured parameters for all systems are very similar, except for the host stars' metallicities and possibly high-energy irradiation levels, which require UV and X-ray observations to constrain. From the sample, WASP-6b, WASP-96b, and WASP-110b have observed transmission spectra that we use to estimate their aerosol coverage levels using the Na i doublet 5892.9 angstrom. We find a tentative correlation between the metallicity of the host stars and the planetary aerosol levels. The trend we find with stellar metallicity can be tested by observing transmission spectra of the remaining planets in the sample. Based on our prediction, WASP-25b and WASP-55b should have higher levels of aerosols than WASP-124b and HATS-29b. Finally, we highlight how targeted surveys of alike planets similar to the ones presented here might prove key for identifying driving factors for atmospheric properties of exoplanets in the future and could be used as a sample selection criterion for future observations with, e.g., JWST, ARIEL, and the next generation of ground-based telescopes.
|
McGruder, C. D., Lopez-Morales, M., Kirk, J., Espinoza, N., Rackham, B. V., Alam, M. K., et al. (2022). ACCESS: Confirmation of a Clear Atmosphere for WASP-96b and a Comparison of Light Curve Detrending Techniques. Astron. J., 164(4), 134.
Abstract: One of the strongest Na I features was observed in WASP-96b. To confirm this novel detection, we provide a new 475-825 nm transmission spectrum obtained with Magellan/IMACS, which indeed confirms the presence of a broad sodium absorption feature. We find the same result when reanalyzing the 400-825 nm VLT/FORS2 data. We also utilize synthetic data to test the effectiveness of two common detrending techniques: (1) a Gaussian processes (GP) routine, and (2) common-mode correction followed by polynomial correction (CMC+Poly). We find that both methods poorly reproduce the absolute transit depths but maintain their true spectral shape. This emphasizes the importance of fitting for offsets when combining spectra from different sources or epochs. Additionally, we find that, for our data sets, both methods give consistent results, but CMC+Poly is more accurate and precise. We combine the Magellan/IMACS and VLT/FORS2 spectra with literature 800-1644 nm HST/ WFC3 spectra, yielding a global spectrum from 400 to 1644 nm. We used the PLATON and Exoretrievals retrieval codes to interpret this spectrum, and find that both yield relatively deeper pressures where the atmosphere is optically thick at log-pressures between 1.3(-1.1)(+1.0) and 0.29(-)(2.02)(+1.86) bars, respectively. Exoretrievals finds solar to supersolar Na I and H2O log-mixing ratios of -5.4(-1.9)(+2.0) and -4.5(-2.0)(+2.0), respectively, while PLATON finds an overall metallicity of log(10) (Z/Z(circle dot)) = -0.49(-0.37)(+1.0) dex. Therefore, our findings are in agreement with the literature and support the inference that the terminator of WASP-96b has few aerosols obscuring prominent features in the optical to near-infrared (near-IR) spectrum.
|
Pinto-Rios, J., Calderon, F., Leiva, A., Hermosilla, G., Beghelli, A., Borquez-Paredes, D., et al. (2023). Resource Allocation in Multicore Elastic Optical Networks: A Deep Reinforcement Learning Approach. Complexity, 2023, 4140594.
Abstract: A deep reinforcement learning (DRL) approach is applied, for the first time, to solve the routing, modulation, spectrum, and core allocation (RMSCA) problem in dynamic multicore fiber elastic optical networks (MCF-EONs). To do so, a new environment was designed and implemented to emulate the operation of MCF-EONs – taking into account the modulation format-dependent reach and intercore crosstalk (XT) – and four DRL agents were trained to solve the RMSCA problem. The blocking performance of the trained agents was compared through simulation to 3 baselines RMSCA heuristics. Results obtained for the NSFNet and COST239 network topologies under different traffic loads show that the best-performing agent achieves, on average, up to a four-times decrease in blocking probability with respect to the best-performing baseline heuristic method.
Keywords: SPECTRUM ASSIGNMENT; ARCHITECTURE; CROSSTALK; EFFICIENT; CORE
|