Chandia, O., Linch, W. D., & Vallilo, B. C. (2011). Compactification of the heterotic pure spinor superstring II. J. High Energy Phys., (10), 22 pp.
Abstract: We study compactifications of the heterotic pure spinor superstring to six and four dimensions focusing on two simple CalabiYau orbifolds. We show that the correct spectrum can be reproduced only if, in the twisted sector, there remain exactly 5 and 2 pure spinor components untwisted, respectively. This naturally defines a “small” Hilbert space of untwisted variables. We point out that the cohomology of the reduced differential on this small Hilbert space can be used to describe the states in the untwisted sector, provided certain auxiliary constraints are defined. In dimension six, the mismatch between the number of pure spinor components in the small Hilbert space and the number of components of a sixdimensional pure spinor is interpreted as providing the projective measure on the analytic subspace (in the projective description) of harmonic superspace.
